Beyond OOP:
A Case Study

Luis Marques
<luis@luismarques.eu>

Status Update

e DHDL transpiler proof-of-concept working
e Compiles plain circuits to D

e \Working on tighter D integration without requiring full D
compiler reimplementation

e QOriginal plan was to first write a digital logic simulator
(Simbool), then do DHDL

e | was confused about good design

Beyond OOP

* | have no a priori preference for OOP or non-OOP
e | just want to know the truth
e |I’m ready to change my mind

e Constructive feedback is always welcome

Beyond OOP

e Bad code and bad designs are not a personal failing
e |’'ve produced my own share of them
e Programming is hard

e (Great software is more important than great code

Beyond OOP

e This talk argues that OOP is wrong in the general case

* “An aspirin cures everything” is wrong in the general
case

e |t’s still the right treatment in specific cases

e “Of course aspirin doesn’t cure everything. Just use the
most appropriate tool for the job”.

e But no one ever points out a broader theory that tries
to explain what “medicine” best treats what “ailment”

Search | Stories v | by | Popularity v | for | All time « 942 results (0.008 seconds) <9

Goodbye, Object Oriented Programming

377 points | ingve | 2 years ago | 340 comments | (https://medium.com/@cscalfani/goodbye-object-oriented-programming-a59cda4c0e53)

Rob Pike on Object Oriented programming
231 points | crawshaw | 5 years ago | 169 comments | (https://plus.google.com/101960720994009339267/posts/holdanihKwb)

What's wrong with Object-Oriented Programming and Functional Programming
214 points | roguelynn | 4 years ago | 142 comments | (https://yinwang0.wordpress.com/2013/11/09/00p-fp/)

Object oriented programming with ANSI-C (1993) [pdf]

214 points | geospeck @ 6 months ago | 57 comments | (https://www.cs.rit.edu/~ats/books/ooc.pdf)

Dimple: An object-oriented API for business analytics powered by D3
150 points | based2 | 2 years ago | 31 comments | (http://dimplejs.org/)

Object Oriented Programming is Inherently Harmful
149 points | idoco | 3 years ago | 190 comments | (http://harmful.cat-v.org/software/OO_programming/)

Rich Hickey's Keynote: A deconstruction of object-oriented time [pdf]
147 points | swannodette | 9 years ago @ 43 comments @ (http://wiki.jvmlangsummit.com/images/a/ab/HickeyJVMSummit2009.pdf)

Golang Object Oriented Design

143 points | JanLaussmann | 5 years ago | 73 comments | (http://nathany.com/good/)

Applying the Unix Philosophy to Object-Oriented Design
125 points | sudonim | 5 years ago | 58 comments | (http://blog.codeclimate.com/blog/2012/11/28/your-objects-the-unix-way/)

Rooby: a Ruby-like object oriented language written in Go
122 points | type0 | a year ago | 66 comments | (https://github.com/rooby-lang/rooby)

Alan Kay on the Meaning of “"Object-Oriented Programming” (2003)

N ERERIER ER N KR ED

Search .
@asois

Search | Stories v | by | Popularity v | for | All time + 878 results (0.002 seconds) %o

Don't distract new programmers with OOP
248 points | angrycoder | 7 years ago | 154 comments | (http://prog21.dadgum.com/93.html)

Alan Kay on the misunderstanding of OOP (1998)
240 points | mmphosis | 2 years ago | 206 comments | (http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-0October/017019.html)

Golang concepts from an OOP point of view
200 points | markkit | 2 years ago | 46 comments | (https://github.com/luciotato/golang-notes/blob/master/OOP.md)

OOP Isn't a Fundamental Particle of Computing
194 points | joeyespo | 5 years ago | 158 comments | (http://prog21.dadgum.com/156.html)

Java 9 with GPU processing, Java 10 will be all-OOP without primitives
188 points | Mitt | 6 years ago | 135 comments | (http://www.javaworld.com/javaworld/jw-03-2012/120315-oracle-s-java-roadmap.html)

Don't Distract New Programmers with OOP
186 points | ColinWright | 4 years ago | 220 comments | (http://prog21.dadgum.com/93.htmI?HN2)

99 Bottles of OOP

164 points | bdcravens | 2 years ago | 71 comments | (http://www.sandimetz.com/99bottles)

Understanding Javascript OOP
150 points | old_sound | 6 years ago | 19 comments | (http://killdream.github.com/blog/2011/10/understanding-javascript-oop/)

OOP practiced backwards is "POQO"
140 points | raganwald | 7 years ago | 90 comments | (http://github.com/raganwald/homoiconic/blob/master/2010/12/00p.md#readme)

Alan Kay on the misunderstanding of OOP
119 points | chc | 8 years ago | 30 comments | (http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-0ctober/017019.html)

OOP no longer mandatory in CMU Computer Science Curriculum

N ERER KR ER N EIINED

Typical Arguments

* “The problem with object-oriented languages is they’ve got
all this implicit environment that they carry around with
them. You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle.” — Joe Armstrong

* Funny, but is it true?
 This is an argument about dependencies. If true:

* /ncidental fact of current practices/technology?

 Necessary consequence of OOP?

Typical Arguments

e “Sure OOP might not be appropriate for some things, but
you really want it for GUIs”

e \What about React?

Do you need all of the properties of OOP for GUI
programming?

e If not, which subset?

e Can other paradigms have that subset?

Typical Arguments

e “Sure OOP might not be worth it for small projects. But
for large projects you really need OOP to tackle the

complexity”

e Why can’t you decompose your large project into
smaller parts and then use other paradigms?

 What exactly is about OOP that other paradigms lack
to be able to tackle that complexity?

 Exactly what size is that? How do you know it?

Moving the Goalposts?

e 1998:
e Alice: “Visual Basic 6 is great. Now it’'s even object-oriented.”

* Bob: “Nah, VB 6 doesn’t have inheritance. For OOP you need
polymorphism, inheritance and encapsulation.”

e 2018:
e Alice: “OO0P sucks. Inheritance causes lots of problems.”

* Bob: “Ah yes, everybody knows you should prefer composition

over inheritance. It’'s not my fault if you don’t practice OOP
correctly!”

OOP

* Some things are arguably not fundamental to OOP.
Example: classes are just a mechanism tor detining
related objects. Thus the same with inheritance.

* Probably the most fundamental:

* Messaging

* Encapsulation

* What's the problem with this”

Object-Oriented Design

* There's nothing wrong with objects per se
* An object is Just a concept, like an integer or red

* But there is an expectation on how we use objects
to solve programming problems

 What is an object, what is encapsulated, etc.

e That’s what this talk criticises

Business Value

e What is our fire? (goal, $)
* Features
 Performance
e Reliability

e Security

(Business Value)’

e Goal mechanisms:
e Encapsulation
e Design by contract
e Jests

e [ype checking

((Business Value)’)’

e (Goal mechanisms, mechanisms:
* Member functions
* Assertions
e Subtyping
e Continuous integration server

e Mechanism — Mechanism — Mechanism — Goal

Business Value?

e Scott Meyers on encapsulation:

e Member functions — encapsulation — flexibility and
robustness — $

* “l've been battling programmers who've taken to heart
the lesson that being object-oriented means putting
functions inside the classes containing the data on
which the functions operate. After all, they tell me,
that's what encapsulation is all about.” [1]

Business Value?

e Scott Meyers on encapsulation:

— encapsulation — flexibility and
robustness — $

* “l've been battling programmers who've taken to heart
the lesson that being object-oriented means putting
functions inside the classes containing the data on
which the functions operate. After all, they tell me,
that's what encapsulation is all about.” [1]

* Non-member functions improve encapsulation

Business Value?

e Scott Meyers on encapsulation:

* Non-member functions = encapsulation — flexibility
and robustness — $

e (Other alternatives?

e Non-member functions = Parnas abstract interface —
flexibility and robustness — $

* Pure functions — functional programming — flexibility
and robustness = $

Software Engineering

e Superficial goals and objections:
e “That’s not object-oriented”
e “You aren’t doing test-driven design”
e “You are not following the rational process”

e “We must use a dependency injection framework”

Approach Overview

ldentify (possible) contradiction
Understand contradiction
Solve contradiction?

Put it in practice

Reductio ad absurdum

e Bad code comments:

void increaseScore() {
goals++; // increase the number of goals

}

e Better code comments:

void increaseScore() {
goals++; // each goal scores one point

}

Reductio ad absurdum

e |s this a contradiction?

/ %k
Swaps “lhs® and “rhs™. (...)

Params:
Llhs = Data to be swapped with "rhs .
rhs = Data to be swapped with "1lhs .
*/

void swap(T)(T lhs, T rhs)

ldentify Contradiction

e Sillion Valley D Meetup (2016-01-28) argument [2]
e Rich Domain Model (RDM)
e OOP approach
e Anemic Domain Model (ADM)

e Procedural / functional approach

RDM Monopoly

Player

buyProperty()

Property

owner

Bank

numHouses

RDM Monopoly

class Player

{
Money cash;
Property[] ownedProperties;
/7 (i)

bool canBuyProperty(Property property)
{

return cash >= property.printedPrice;

}

void buyProperty(Property property)
{

property.owner = this;

cash —-= property.printedPrice;

}

class Property
{
name;
Money printedPrice;
Player owner;
/7 (aud)

Object Responsibilities

e If a player owns Baltic Avenue, can the player add a house to it?
e (Can she afford it?
* |s there a house in the bank?
e Is it either the player’s turn or between turns?
e Does the property already have four houses?
e |s Baltic Avenue mortgaged?
 What if Mediterranean Avenue (same group) is mortgaged?

e \What if Baltic Avenue has one house but Mediterranean Avenue has
none?

RDM Monopoly

: Player
 Fat objects
buyProperty(Properi Bank
 God objects rollfce() owng mHouses

Dice
rollValue

* No single
responsibility

goToJail()

Domain Layer

(Domain)
Service Layer

ADM Monopoly

Player

money

HousePurchase
Validator

canBuyHouse()

Property Bank
owner numHouses
BuyHouse | Action
perform()

ADM Monopoly

class OfficialRulesHousePurchaseValidator : HousePurchaseValidator

{
Game game;
Player purchaser;
Property property;

bool canBuyHouse()

{
return game.currentPlayer == purchaser &&
player.cash >= property.houseCost &&

(o02);
}

class BuyHouse : Action

{
Property property;
HousePurchaseValidator validator; // we depend on the abstract validator interface

override void perform()

{

enforce(validator.canBuyHouse);

(...)

Meetup Conclusions

e The anemic approach had advantages:
e Better separation of concerns (SRP)
e |ncreased reusability

e Easier to test

Meetup Conclusions

e More detailed description:

e Core Dump podcast, episode 1 [3]

o <http://www.coredump.xyz/1>

http://www.coredump.xyz/1

ldentify Contradiction

e People want and believe they can get both OOP (RDM)
and SRP

e To get SRP we had to go for fake OOP (ADM)
e Therefore = (SRP A OOP)
 (Goes against standard assumptions. Contradiction.

* Also, OOP was supposed to bring reusability

* |n that case it was the not-quite-OOP solution that did

ldentify Contradiction

e \Where’s the contradiction?
e On the surface: RDM vs SRP

e But... principle of explosion

1.

ldentify Contradiction

PA-P
assumption

P
from (1) by conjunction elimination

- P
from (1) by conjunction elimination

PvQ
from (2) by disjunction introduction

Q
from (3) and (4) by disjunctive syllogism

(PA=-P)—>Q
from (5) by conditional proof (discharging assumption 1)

ldentify Contradiction

e PA=-P—=Q
e roses are red A roses are not red — ham is tasty
e ... » = (SRP ARDM) = - RDM

* Maybe the problem is upstream
* Maybe it’s not related to either SRP or RDMs

e What’s the fundamental problem with OOP?

OOP Problem

e The solution has to look like the problem

 The entities always define the abstraction frontier

Abstraction Frontier

e The car OOP abstraction frontier

* Things outside the car object know nothing about the
internals of the car

* Things inside the car object know everything about the
internals

Abstraction Frontier

 Object composition is OOP

Abstraction Frontier

Car

m

 Object composition is OOP

* Unencapsulated object aggregation is not

Abstraction Frontier

 Object composition is OOP

* Unencapsulated object aggregation is not

Abstraction Frontier

Pavement

ObjectCollider
 Object composition is OOP

 Unencapsulated object aggregation is not

* Neither is shared encapsulation

Abstraction Frontier

OOP Object

9

 Object composition is OOP

* Unencapsulated object aggregation is not

* Neither is shared encapsulation

Abstraction Frontier

PATTERNS OF 3y, 8
ENTERPRISE
APPlisiiis

ARC!

< ()| ERYR(EN

m

m

_ _ non-O0OP
OOP abstraction frontier abstraction frontier

OOP is what OOP
practitioners do

Abstraction Frontier

Abstraction Frontier

void foo() Emid foo()
{
while(...) { range
if(...) Algorithm -algorithm1
goto xxx .algor!thm2
return; .algorithm3
} .consumer,
}

—> Algorithm 1 e d Algorithm 2 s d Algorithm 3 —>

Abstraction Frontier

void foo() void foo()
{ {
i range
while(...) { _
if(...) Algorithm -algorithm1
goto xxx .algorithm?2
return; .algorithm3
} , .consumer;
}
)

B)
o B oeon B N) o B e

Abstraction Frontier

PATTERNS OF
ENTERPRISE
APPI s

EEII(ﬂm

Ma TIIE\VF
Iadd Mcm el msme
RonexT M ng n ean
RANDY STAF
4 .. -

Car
m

OOP is what OOP . . non-OOP

oractitioners do OOP abstraction frontier abstraction frontier

1: one entity == one class
Dogma: 2: always abstract along entity lines
3: always act from inside the frontier

Example

Athlete

A

laps: 1int
run()

Example

Athlete LapCounterService

laps: 1int
run()

Example

Athlete LapCounterService

run()

Example

Athlete LapCounterService

Athlete 1: 2 laps

run() Athlete 2: 3 laps

Example

Athlete LapCounterService LapStatisticsService

’k O il

Athlete 1: 2 laps
run() Athlete 2: 3 laps Average laps: 2.5

Service Dispatch

Entity 1 Entity 2

transmogrify() transmogrify()

Service Dispatch

Entity 1

Entity 2

Transmogrifier

transmogrify(Entity)

Service Dispatch

Entity 1

Entity 2

Transmogrifier

transmogrify(Entity)

How do we polymorphically transmogrify?
That is, how do we dispatch based on the entity argument?

Service Dispatch

Entity 1 Entity 2 Transmogrifier

visit(Transmogrifier) visit(Transmogrifier) transmogrify(Entity)

How do we polymorphically transmogrify?
That is, how do we dispatch based on the entity argument?

Service Dispatch

1 i1f (f needs to be wirtual)

2 make f a member function of C;

3 else if (f 1s operator>> or

4 operator<<)

S {

6 make f a non-member function;

7 if (f needs access to non-public
38 members of C)

9 make f a friend of C;
10 }
11 else if (f needs type conversions
12 on 1ts left-most argument)
13 {
14 make f a non-member function;
15 if (f needs access to non-public
16 members of C)
17 make f a friend of C;

18 }

19 else if (f can be implemented via C's
20 public interface)
21 make f a non-member function;
22 else
23 make f a member function of C;

Service Dispatch

O J o O WK

NNMNNRPRRRRRRPRRPRR R
WNHF OWOW-Jo U d WM O W

i1f (f needs to be wirtual)
make f a member function of C;
else if (f 1s operator>> or
operator<<)

l.e. give up

{

make f a non-member function;
if (f needs access to non-public
members of C)
make f a friend of C;
}
else if (f needs type conversions
on 1ts left-most argument)
{
make £ a non-member function;
if (f needs access to non-public
members of C)
make f a friend of C;
}
else if (f can be implemented via C's
public interface)
make f a non-member function;
else
make f a member function of C;

Open Methods

e Use Jean-Louis Leroy’s openmethods.d library [4]

import openmethods;
mixin(registerMethods);

void transmogrify(virtuallEntity);

@method

void _transmogrify(Entityl entity) <
(...)

}

@method

void _transmogrify(Entity2 entity) {
(...)

}

The Expressive Style

class A

{
void foo() {

}
e Orthodox OOP

}

A a = new A;
a.foo();

The Expressive Style

// module 1
class A

{

e Maximal encapsulation

OOP ;

// module 2
e 00 only depends on the void foo(A a) {

public interface of A
}

A a = new A;
a.foo(); // UFCS

The Expressive Style

// module 1
» Generic / Dbl design zlass A
e You can’t go back to y
the orthodox style
// module 2
e To which class does foo ygid foo(T)(T a) {
belong to?
}

e Compile-time design
A a = new A;
a.foo(); // UFCS

The Expressive Style

// module 1
class A

{

e Expressive design 1

e The runtime counterpart ~ // module 2

to the generic / Dbl void foo(virtual!
design
}
e Open methods > @method
member methods void foo(A entity) {
(...)
}

A a = new A;
a.foo(); // UFCS

Case Study

Logisim

Good educational app

NO |Onger maintained Toasr: mem of cpu- 1601 . o=l)

 File Edit Project Simulate Window Help

hix|]A|Be>DD
BEY s + -

Confusing Java OOP [".i' . L, 1
onfusing Java See o s
. ::_;:;'f'"‘-“)‘)-e"“'f-‘b = |mstruction . 1
architecture :E [Fe s i,
;_i/lll.; AWy ~ d N |
1 PCcontral ! J
i:;bu;-:onvd o 3 -
m
=1

Selection: Clock |

Poor simulation r"'@QTjDJ [ﬂs]
performance o z% ore | e

Label Location South :D
ol Fe SarreSer 0
Label Fork [SansSenl 8., | “m
- | ¢

100%

Non-native Ul

Simbool

Logisim compatibility

,,,,, Simbool
File Edit View Help

Better multi-valued logic
support, better timing model, e > af—p>e
bidirectional ports, etc.

Export to Verilog / VHDL /
DHDL (“run” on FPGAS)

JIT accelerated simulator

Native Ul planned for
Windows, macOS, Linux

OO Design Example

e Domain-driven designh book example

N ESLEN

Tackling Complexity in the Heart of Software

N Z
) ° ~ [

Foreword by Martin Fowler

OO Design Example

e Domain-driven design book example

OO Design Example

e Domain-driven design book example

OO Design Example

e Domain-driven design book example

Component X
lwstamce

Pin * | Net

OO Design Example

e Domain-driven design book example

OO Design Example

e Domain-driven design book example

£ :
comp |7 —_— MOI‘P-; 2 p:;shes.
tyee b | _ 274

getPushesFromPinNumber(|)

OO Design Example

e Domain-driven design book example

Component Type

getPushesFromPinNumber(int)

Component :
Pin Net
Instance . 1
*
signal(int) signal(int) signal(int)

OO Design Example

* This is a model of the problem

e Why are we assuming the most straightforward solution
looks like the problem?

 Why are we assuming the component stores the pushes?

Component Type

getPushesFromPinNumber(int)

signal(int) signal(int)

Simbool Design

e Classes?

e Circuit
e Component |
P of—-
* Pin -
° Port Circuit: m

e Value

e Wire

Half Cycles: 0.2 150 -+ L

e Responsibilities?

Simbool Design

e A revisionist account of how the design came to be...

bool input;

1-—-{:>C>-<:> bool output;

output = 'input;

e No classes yet. | was just thinking about the computation

Simbool Design

o e

e How do we generalize this?

bool a;
bool b;
bool c;
bool d;
b = !'a;

I'b
b

o
I 1l

&& C

Simbool Design

e e PO

e How do we generalize this?

Simbool Design

bool[] state;

class ComponentInstance

{
}

ValueRef[] ports;

alias ValueRef

= boo lx:
//alias ValueRef =

int:

Simbool Design

bool[] state;

class ComponentInstance

{

ValueRef[] ports;

I3
alias ValueRef = boolx;
//alias ValueRef = 1int;

Ib;
b & C

Simbool Design

e Many-valued logic

e False (0) 1—?—®
0
* True (1)
1—{??:)
e Floating (high impedance) 0
0
e Weak low (pull-down resistor) 1—(?—%—@
* Weak high (pull-up resistor) 2 1
e Forcing unkown / error 13_@

e Weak unknown

Simbool Design

Value[] state;

class ComponentInstance

{

ValueRef[] ports;
I3

alias ValueRef = Valuex;
struct Value { ... }

- 1b

o 0

Simbool Design

|

L2 e

Simbool Design

delta cycles

i

Simbool Design

/‘ﬁ:::,__\\\\ Valuel] state;
a/\ b C/\d /

class ComponentInstance

{
1 0 1 0 ValueRef[] ports;
Yoo o }
o>y
b = la; d =Db && C
c = !b; c = !b;
d=Db& c p = 13;

Simbool Design

////////::;;;;;:::::§% Value[l state;
a/\ b C/\d /

class ComponentInstance

{
1 0 1 0 ValueRef[] ports;
t ! f f }
b = la; d =Db && C
c = !b; c = !b;
d=Db& c p = 13;

Simbool Design

==
2
¥
©

[~

Value[2][] values;

class ComponentInstance

{
}

ValueRef[] ports;

alias ValueRef = Valuel[2]x;
struct Value { ... }

Simbool Design

Value[2][] values;

class ComponentInstance

{
}

ValueRef[] ports;

alias ValueRef = Valuel[2]x;
struct Value { ... }

Simbool Design

Value[2][] values;

class ComponentInstance

{
}

ValueRef[] ports;

alias ValueRef = Valuel[2]x;
struct Value { ... }

Simbool Design

Value[2][] values;

class ComponentInstance

{
}

ValueRef[] ports;

alias ValueRef = Valuel[2]x;
struct Value { ... }

Simbool Design

S
-H o

Simbool Design

>
!H o

QO —Do—@

Simbool Design

> >
~ .

OF—o—E

Simbool Design

> >
~ .

l [} >o—(@)

>
e

Simbool Design

Simbool Design

These introduce 1 delta cycle of delay each
Not a good timing model

Simbool Design

e Keep two representations?

e |ntroduce execution priority?

Simbool Design

© @ ®
©

must combine (true + false)

© ©
© ©

you can’t just do (E - true)

Simbool Design

class Signal

{ Value value;
signal 1 (1 driver) Value[] drivers;
..(:) 1
signal 2 (1 driver) class ComponentInstance
{ PortInstancel[] ports;
s

struct PortInstance

{
Signal signal;
int driver = -1;

Simbool Design

class Signal

{ Value value;
signal 1 (1 driver) Valuel[]l drivers;
_@ 1
signal 2 (1 driver) class ComponentInstance
{ PortInstancel[] ports;
signal 1 (2 drivers) }
4//’ ?truct PortInstance

Signal signal;
int driver = -1;

Simbool Design

class Signal

{ Value value,;

Value[] drivers;
}
class ComponentInstance
{ PortInstancel[] ports;
}

struct PortInstance

{
Signal signal;
int driver = -1;

Simbool Design

class Signal

{ Value value,;

Value[] drivers;
}
class ComponentInstance
{ PortInstancel[] ports;
}

struct PortInstance

{
Signal signal;
int driver = -1;

Simbool Design

class Signal

signal 1 sighal 2 t Value value:
Valuel] drivers;
}
class ComponentInstance
{ PortInstancel[] ports;
}

struct PortInstance

{
Signal signal;
int driver = -1;

Simbool Design

class Signal

* We've arrived at our design by ¢ Value value:
thinking about the computation Valuell drivers;
we wanted to perform)

* Avoided architecture astronaut class ComponentInstance

. {
type decisions PortInstancel[] ports;

 We only abstracted what we ;
actually needed to abstract struct PortInstance
{

Signal signal;

* We improved the encapsulation int driver = —1:

Abstraction Frontier

Logisim

Component

state, location

instantiaiod

getlocationy

Simbool

Copghpolent

state

Simbool’s Component
classe’s single
responsibility: maintain the
simulation state

How do we simulate
them?

How do we draw the
components?

How do we know where to
draw them?

m n AndGate
Abstraction Frontier o
simulate()
draw()
e Orthodox OOP Design:
e AndGate AndGate \ AndGateGUI
tat ~ gate, | ti
e Maximal encapsulation OOP: State gate, focation
simulate() draw()
e AndGate
e AndGateGUI
AndGate DocComponent
* Expressive style: \ P
e AndGate state \component,
location
e simulate open method
simulate

e draw open method
draw

Abstraction Frontier

* Maximal encapsulation OOP:

void render() A
ComponentGUI cg; // AndGateGUIL
cg.draw();

* EXpressive style:
void draw(DocComponent, virtual!Component);

void render() {
DocComponent dc;
auto comp = dc.component
draw(dc, comp);

Abstraction Frontier

doc
components
constant.d

e sim package only knows about the ® gates.d

SimU|ati0n ;gz:gaeiej.d
register.d
. . # splitter.d
e All you need for the actual simulation & subcircuitd
gui
components
clock.d

e doc package knows about document # constant.d

geometry semantics (depends on sim) R
probe.d
. o # register.d
* “Do these wires join?” ELETE
;tunnel.d |
e gui knows about both the simulation state v B components

#| clock.d

(i.e. in which state to draw the components) & constant.d

gates.d

and the document geometry (where to S
draw them; depends on both) ¢ pind

probe.d

register.d
splitter.d

subcircuit.d
tunnel.d

Abstraction Frontier

e Example abstraction frontiers (not entity-oriented)

Library

Label

Document

WireSegment

DocComponent

Simulation Wire

Circuit
Wirelnstance
Circuitinstance

Component Pin

Componentinstance

Abstraction Frontier

e Example abstraction frontiers (not entity-oriented)

Library

Label

Document

WireSegment

draw()

DocComponent

Simulation Wire

Circuit
Wirelnstance
Circuitinstance

Component Pin

Componentinstance

Object Graphs

o

)

Gun

Object Graphs

e [aw of Demeter?

® N0 0b]
.getX()
.getY()
.getz()
.doSomething()

Game

_

~

Player

~

_

Gun

_

Ammo

Object Graphs

e [aw of Demeter?

® N0 0b]
.getX()
.getY()
.getz()
.doSomething()

 Not great for performance

Object Graphs

* We know which
simulation we are
simulating at the point of
execution

 Why store redundant
information in the
component instance?

Simulation

~

_

Circuit

_

~

Circuitinstance \

Component

Instance

Object Graphs

* We know which
simulation we are
simulating at the point of
execution

 Why store redundant
information in the
component instance?

evaluate(Simulation, virtual!ComponentInstance);

Memory Allocation

e |In OOP objects are an island of abstraction

e They live by themselves, have references to other
objects

e Each object knows how to create itself (ctor)
e \When that’s not the case, we use a special name

e \We have context that we can use at the point of allocation

ComponentInstance instantiate(Simulation,
virtual!Component, CircuitInstance parentInstance);

OOP Assessment

e AndGate and Register inherit from Component

e OOP mindset:
e Component provides an abstract simulation method
e AndGate knows how an AND gate actually works
* Nobody else has to know it

 That’s the point of messaging! The object interprets
the message!

OOP Assessment

e Truth:
e The AndGate type indicates what should be simulated
 Two simulation services:
e The interpreter (evaluate open method)
e The JIT

* Conclusion: OOP perspective wasn’t very illuminating

OOP Assessment

e Keeping nimble despite uncertain requirements
e Use minimal abstractions
e size t
e Accessor methods vs const reference
e alias ValueRef = ..

e Validate the design first. Only abstract what would be a
pain to change later

OOP Assessment

e Why is OOP appealing?
e Main header syndrome

e GUI classes

Testing

* Empire refactoring experience
e Not OOP (yet easier to work with than many other code bases!)
* No tests
* Michael Feathers: legacy code is code without tests
e Create unit tests for everything?
* Too much work!
 Not even clear what the exact game rules were

e Smarter alternative

Testing

e Empire refactoring experience
e Set up 1+ games (different seeds), with no Ul
 Record all game messages and the map state to a buffer

e Hash the buffer (SHA-1)

e Check that the code about to be refactored is covered by the test, using
the —cov option

e Refactor
e Run the test again; compare the hash

 Worked amazingly well (fast and effective)

Testing

Simulation, document, GUI are separate packages
Orthodox advice would be to have separate unit tests
Started out with simulation unittest blocks

* The tests were very verbose

Replaced those with integrated tests

e Design circuit in GUI; save to file; read file in test; simulate; assert the
desired property

e Easier to visually debug wrong results

e Can compare results with Logisim

Conclusion

Don’t assume two classes always have to hide all of their internals from each
other (orthodox OOP). There may be better lines along which to define
abstraction frontiers, possibly cutting across entities.

Consider thinking of the computation first, and only then what abstractions
better support it

Program to the public interface; don’t make it a member
A Too method on class C only works for C objects and subclasses
e A template function works for any compatible type

e An open method is the runtime counterpart

e Dbl ¥ open methods. Sitting in a tree. KISSing

References

1. Meyers, Scott. How Non-Member Functions Improve
Encapsulation. <http://www.drdobbs.com/cpp/how-non-
member-functions-improve-encapsu/184401197>

2. Marques, Luis. A defense of so-called anemic domain
models. < http://www.coredump.xyz/meetup % 20-
%20anemic%20domain%20models.pdf>

3. Core Dump Podcast, episode 1.
<http://www.coredump.xyz/1>

4. Leroy, Jean-Louis. openmethods.d.
<https://code.dlang.org/packages/openmethods>

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
http://www.coredump.xyz/meetup%20-%20anemic%20domain%20models.pdf
http://www.coredump.xyz/meetup%20-%20anemic%20domain%20models.pdf
http://www.coredump.xyz/meetup%20-%20anemic%20domain%20models.pdf
https://code.dlang.org/packages/openmethods

