
Beyond OOP:  
A Case Study

DConf 2018

Luís Marques

<luis@luismarques.eu>

Status Update
• DHDL transpiler proof-of-concept working

• Compiles plain circuits to D

• Working on tighter D integration without requiring full D
compiler reimplementation

• Original plan was to first write a digital logic simulator
(Simbool), then do DHDL

• I was confused about good design

Beyond OOP

• I have no a priori preference for OOP or non-OOP

• I just want to know the truth

• I’m ready to change my mind

• Constructive feedback is always welcome

Beyond OOP

• Bad code and bad designs are not a personal failing

• I’ve produced my own share of them

• Programming is hard

• Great software is more important than great code

Beyond OOP
• This talk argues that OOP is wrong in the general case

• “An aspirin cures everything” is wrong in the general
case

• It’s still the right treatment in specific cases

• “Of course aspirin doesn’t cure everything. Just use the
most appropriate tool for the job”.

• But no one ever points out a broader theory that tries
to explain what “medicine” best treats what “ailment”

26/04/2018, 13+06HN Search powered by Algolia

Page 2 of 2https://hn.algolia.com/?query=object-oriented&sort=byPopularity&prefix&page=0&dateRange=all&type=story

About • Settings • Help • API • Hacker News • Fork/Contribute • Status • Cool apps

 1 2 3 4 5 48 $

Sick of Ruby, dynamic typing, side effects, and object-orientedobject-oriented programming
97 points blakehaswell 4 years ago 96 comments (https://blog.abevoelker.com/sick-of-ruby-dynamic-typing-side-effects-object-oriented-object-oriented

Introduction to Object-OrientedObject-Oriented JavaScript
96 points Garbage 3 years ago 62 comments (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-OrientedObject-Oriented

Elixir as an Object-OrientedObject-Oriented Language
96 points weatherlight 2 years ago 28 comments (http://tech.noredink.com/post/142689001488/the-most-object-oriented-object-oriented-language)

Object-orientedObject-oriented Programming in vanilla JavaScript
95 points 1bytebeta 6 months ago 55 comments (https://medium.com/@shlominissan/object-oriented/object-oriented-programming-in-vanilla-javascript-f3945b15f08a)

Was object-orientedobject-oriented programming a failure? (2015)
94 points open-source-ux a year ago 119 comments (https://www.quora.com/Was-object-oriented-object-oriented-programming-a-failure/answer/Wouter-van-Oortmerssen)

%

Goodbye, Object Oriented Programming
377 points ingve 2 years ago 340 comments (https://medium.com/@cscalfani/goodbye-object-oriented-programming-a59cda4c0e53)

Rob Pike on Object Oriented programming
231 points crawshaw 5 years ago 169 comments (https://plus.google.com/101960720994009339267/posts/hoJdanihKwb)

What's wrong with Object-Oriented Programming and Functional Programming
214 points roguelynn 4 years ago 142 comments (https://yinwang0.wordpress.com/2013/11/09/oop-fp/)

Object oriented programming with ANSI-C (1993) [pdf]
214 points geospeck 6 months ago 57 comments (https://www.cs.rit.edu/~ats/books/ooc.pdf)

Dimple: An object-oriented API for business analytics powered by D3
150 points based2 2 years ago 31 comments (http://dimplejs.org/)

Object Oriented Programming is Inherently Harmful
149 points idoco 3 years ago 190 comments (http://harmful.cat-v.org/software/OO_programming/)

Rich Hickey's Keynote: A deconstruction of object-oriented time [pdf]
147 points swannodette 9 years ago 43 comments (http://wiki.jvmlangsummit.com/images/a/ab/HickeyJVMSummit2009.pdf)

Golang Object Oriented Design
143 points JanLaussmann 5 years ago 73 comments (http://nathany.com/good/)

Applying the Unix Philosophy to Object-Oriented Design
125 points sudonim 5 years ago 58 comments (http://blog.codeclimate.com/blog/2012/11/28/your-objects-the-unix-way/)

Rooby: a Ruby-like object oriented language written in Go
122 points type0 a year ago 66 comments (https://github.com/rooby-lang/rooby)

Alan Kay on the Meaning of “Object-Oriented Programming” (2003)

Search by for 942 results (0.008 seconds) !Stories Popularity All time

Search
Hacker News object-oriented " by #

Don't distract new programmers with OOP
248 points angrycoder 7 years ago 154 comments (http://prog21.dadgum.com/93.html)

Alan Kay on the misunderstanding of OOP (1998)
240 points mmphosis 2 years ago 206 comments (http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html)

Golang concepts from an OOP point of view
200 points markkit 2 years ago 46 comments (https://github.com/luciotato/golang-notes/blob/master/OOP.md)

OOP Isn't a Fundamental Particle of Computing
194 points joeyespo 5 years ago 158 comments (http://prog21.dadgum.com/156.html)

Java 9 with GPU processing, Java 10 will be all-OOP without primitives
188 points Mitt 6 years ago 135 comments (http://www.javaworld.com/javaworld/jw-03-2012/120315-oracle-s-java-roadmap.html)

Don't Distract New Programmers with OOP
186 points ColinWright 4 years ago 220 comments (http://prog21.dadgum.com/93.html?HN2)

99 Bottles of OOP
164 points bdcravens 2 years ago 71 comments (http://www.sandimetz.com/99bottles)

Understanding Javascript OOP
150 points old_sound 6 years ago 19 comments (http://killdream.github.com/blog/2011/10/understanding-javascript-oop/)

OOP practiced backwards is "POO"
140 points raganwald 7 years ago 90 comments (http://github.com/raganwald/homoiconic/blob/master/2010/12/oop.md#readme)

Alan Kay on the misunderstanding of OOP
119 points chc 8 years ago 30 comments (http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html)

OOP no longer mandatory in CMU Computer Science Curriculum

Search by for 536 results (0.003 seconds) !Stories Popularity All time

Search
Hacker News OOP " by #

26/04/2018, 13+06HN Search powered by Algolia

Page 2 of 2https://hn.algolia.com/?query=object-oriented&sort=byPopularity&prefix&page=0&dateRange=all&type=story

About • Settings • Help • API • Hacker News • Fork/Contribute • Status • Cool apps

 1 2 3 4 5 48 $

Sick of Ruby, dynamic typing, side effects, and object-orientedobject-oriented programming
97 points blakehaswell 4 years ago 96 comments (https://blog.abevoelker.com/sick-of-ruby-dynamic-typing-side-effects-object-oriented-object-oriented

Introduction to Object-OrientedObject-Oriented JavaScript
96 points Garbage 3 years ago 62 comments (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-OrientedObject-Oriented

Elixir as an Object-OrientedObject-Oriented Language
96 points weatherlight 2 years ago 28 comments (http://tech.noredink.com/post/142689001488/the-most-object-oriented-object-oriented-language)

Object-orientedObject-oriented Programming in vanilla JavaScript
95 points 1bytebeta 6 months ago 55 comments (https://medium.com/@shlominissan/object-oriented/object-oriented-programming-in-vanilla-javascript-f3945b15f08a)

Was object-orientedobject-oriented programming a failure? (2015)
94 points open-source-ux a year ago 119 comments (https://www.quora.com/Was-object-oriented-object-oriented-programming-a-failure/answer/Wouter-van-Oortmerssen)

%

Typical Arguments
• “The problem with object-oriented languages is they’ve got

all this implicit environment that they carry around with
them. You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle.” – Joe Armstrong

• Funny, but is it true?

• This is an argument about dependencies. If true:

• Incidental fact of current practices/technology?

• Necessary consequence of OOP?

Typical Arguments
• “Sure OOP might not be appropriate for some things, but

you really want it for GUIs”

• What about React?

• Do you need all of the properties of OOP for GUI
programming?

• If not, which subset?

• Can other paradigms have that subset?

Typical Arguments
• “Sure OOP might not be worth it for small projects. But

for large projects you really need OOP to tackle the
complexity”

• Why can’t you decompose your large project into
smaller parts and then use other paradigms?

• What exactly is about OOP that other paradigms lack
to be able to tackle that complexity?

• Exactly what size is that? How do you know it?

Moving the Goalposts?
• 1998:

• Alice: “Visual Basic 6 is great. Now it’s even object-oriented.”

• Bob: “Nah, VB 6 doesn’t have inheritance. For OOP you need
polymorphism, inheritance and encapsulation.”

• 2018:

• Alice: “OOP sucks. Inheritance causes lots of problems.”

• Bob: “Ah yes, everybody knows you should prefer composition
over inheritance. It’s not my fault if you don’t practice OOP
correctly!”

OOP
• Some things are arguably not fundamental to OOP.

Example: classes are just a mechanism for defining
related objects. Thus the same with inheritance.

• Probably the most fundamental:

• Messaging

• Encapsulation

• What’s the problem with this?

Object-Oriented Design
• There’s nothing wrong with objects per se

• An object is just a concept, like an integer or red

• But there is an expectation on how we use objects
to solve programming problems

• What is an object, what is encapsulated, etc.

• That’s what this talk criticises

Business Value
• What is our fire? (goal, $)

• Features

• Performance

• Reliability

• Security

• …

(Business Value)’

• Goal mechanisms:

• Encapsulation

• Design by contract

• Tests

• Type checking

((Business Value)’)’
• Goal mechanisms, mechanisms:

• Member functions

• Assertions

• Subtyping

• Continuous integration server

• Mechanism → Mechanism → Mechanism → Goal

Business Value?
• Scott Meyers on encapsulation:

• Member functions → encapsulation → flexibility and
robustness → $

• “I've been battling programmers who've taken to heart
the lesson that being object-oriented means putting
functions inside the classes containing the data on
which the functions operate. After all, they tell me,
that's what encapsulation is all about.” [1]

Business Value?
• Scott Meyers on encapsulation:

• Member functions → encapsulation → flexibility and
robustness → $

• “I've been battling programmers who've taken to heart
the lesson that being object-oriented means putting
functions inside the classes containing the data on
which the functions operate. After all, they tell me,
that's what encapsulation is all about.” [1]

• Non-member functions improve encapsulation

Business Value?
• Scott Meyers on encapsulation:

• Non-member functions → encapsulation → flexibility
and robustness → $

• Other alternatives?

• Non-member functions → Parnas abstract interface →
flexibility and robustness → $

• Pure functions → functional programming → flexibility
and robustness → $

Software Engineering

• Superficial goals and objections:

• “That’s not object-oriented”

• “You aren’t doing test-driven design”

• “You are not following the rational process”

• “We must use a dependency injection framework”

Approach Overview

• Identify (possible) contradiction

• Understand contradiction

• Solve contradiction?

• Put it in practice

void increaseScore() {
 goals++; // each goal scores one point
}

Reductio ad absurdum
• Bad code comments:

• Better code comments:

void increaseScore() {
 goals++; // increase the number of goals
}

Reductio ad absurdum
• Is this a contradiction?

/**
Swaps `lhs` and `rhs`. (...)

Params:
 lhs = Data to be swapped with `rhs`.
 rhs = Data to be swapped with `lhs`.
*/
void swap(T)(T lhs, T rhs)

Identify Contradiction

• Sillion Valley D Meetup (2016-01-28) argument [2]

• Rich Domain Model (RDM)

• OOP approach

• Anemic Domain Model (ADM)

• Procedural / functional approach

RDM Monopoly

Player

buyProperty()

Property

owner

Bank

numHouses

RDM Monopoly
class Player
{
 Money cash;
 Property[] ownedProperties;
 // (...)

 bool canBuyProperty(Property property)
 {
 return cash >= property.printedPrice;
 }

 void buyProperty(Property property)
 {
 property.owner = this;
 cash -= property.printedPrice;
 }
}

class Property
{
 string name;
 Money printedPrice;
 Player owner;
 // (...)
}

Object Responsibilities
• If a player owns Baltic Avenue, can the player add a house to it?

• Can she afford it?

• Is there a house in the bank?

• Is it either the player’s turn or between turns?

• Does the property already have four houses?

• Is Baltic Avenue mortgaged?

• What if Mediterranean Avenue (same group) is mortgaged?

• What if Baltic Avenue has one house but Mediterranean Avenue has
none?

• Fat objects

• God objects

• No single 
responsibility

RDM Monopoly

Player

buyProperty()

rollDice()

collectRent()

payMortgame()

goToJail()

Property
owner

Bank
numHouses

Dice
rollValue

ADM Monopoly

Player

money

Property

owner

Bank

numHouses

HousePurchase
Validator

canBuyHouse()

BuyHouse

perform()

Action

Domain Layer

(Domain)
Service Layer

ADM Monopoly
class OfficialRulesHousePurchaseValidator : HousePurchaseValidator
{
 Game game;
 Player purchaser;
 Property property;

 bool canBuyHouse()
 {
 return game.currentPlayer == purchaser &&
 player.cash >= property.houseCost &&
 (...);
 }
}

class BuyHouse : Action
{
 Property property;
 HousePurchaseValidator validator; // we depend on the abstract validator interface

 override void perform()
 {
 enforce(validator.canBuyHouse);
 (...)
 }
}

Meetup Conclusions

• The anemic approach had advantages:

• Better separation of concerns (SRP)

• Increased reusability

• Easier to test

Meetup Conclusions
• More detailed description:

• Core Dump podcast, episode 1 [3]

• <http://www.coredump.xyz/1>

http://www.coredump.xyz/1

Identify Contradiction
• People want and believe they can get both OOP (RDM)

and SRP

• To get SRP we had to go for fake OOP (ADM)

• Therefore ¬ (SRP ∧ OOP)

• Goes against standard assumptions. Contradiction.

• Also, OOP was supposed to bring reusability

• In that case it was the not-quite-OOP solution that did

Identify Contradiction

• Where’s the contradiction?

• On the surface: RDM vs SRP

• But… principle of explosion

Identify Contradiction
1. P ∧ ¬ P 

 assumption

2. P 

 from (1) by conjunction elimination

3. ¬ P 

 from (1) by conjunction elimination

4. P ∨ Q 

 from (2) by disjunction introduction

5. Q 

 from (3) and (4) by disjunctive syllogism

6. (P ∧ ¬ P) → Q 

 from (5) by conditional proof (discharging assumption 1)

Identify Contradiction
• P ∧ ¬ P → Q

• roses are red ∧ roses are not red → ham is tasty

• … → ¬ (SRP ∧ RDM) → ¬ RDM

• Maybe the problem is upstream

• Maybe it’s not related to either SRP or RDMs

• What’s the fundamental problem with OOP?

OOP Problem

• The solution has to look like the problem

• The entities always define the abstraction frontier

Abstraction Frontier

• The car OOP abstraction frontier

• Things outside the car object know nothing about the
internals of the car

• Things inside the car object know everything about the
internals

Car

Abstraction Frontier

• Object composition is OOP

Car

Engine Airbag Wheel

Abstraction Frontier

• Object composition is OOP

• Unencapsulated object aggregation is not

Car

Engine Airbag Wheel

Abstraction Frontier

• Object composition is OOP

• Unencapsulated object aggregation is not

Car

Engine Airbag Wheel

Abstraction Frontier

• Object composition is OOP

• Unencapsulated object aggregation is not

• Neither is shared encapsulation

Car

Engine Airbag Wheel

ObjectCollider

Pavement

Abstraction Frontier

• Object composition is OOP

• Unencapsulated object aggregation is not

• Neither is shared encapsulation

Car

Engine Airbag Wheel

OOP Object

D Object ?

Abstraction Frontier

Car

Engine Airbag Wheel

OOP abstraction frontier

Car Engine

Airbag Wheel

non-OOP 
abstraction frontier

❤
"

OOP is what OOP  
practitioners do

Abstraction Frontier

void foo()
{

while(…) {
 if(…)
goto xxx
 return;

}

Algorithm

Abstraction Frontier

void foo()
{

while(…) {
 if(…)
goto xxx
 return;

}

Algorithm

Range Algorithm 1 Algorithm 2 Algorithm 3 Consumer

void foo()
{

range
.algorithm1  
.algorithm2
.algorithm3
.consumer;

}

Abstraction Frontier

void foo()
{

while(…) {
 if(…)
goto xxx
 return;

}

Algorithm

Range Algorithm 1 Algorithm 2 Algorithm 3 Consumer

void foo()
{

range
.algorithm1  
.algorithm2
.algorithm3
.consumer;

}

Abstraction Frontier

Car

Engine Airbag Wheel

OOP abstraction frontier

Car Engine

Airbag Wheel

non-OOP 
abstraction frontier

❤
"

OOP is what OOP  
practitioners do

1: one entity == one class
2: always abstract along entity lines
3: always act from inside the frontier

Dogma:

Example

Athlete

laps: int
run()

Example

Athlete LapCounterService

laps: int
run()

Example

Athlete

laps: int
run()

LapCounterService

Example

Athlete LapCounterService

Athlete 1: 2 laps 
Athlete 2: 3 laps 

...run()

Example

Athlete

run() 

LapCounterService

Athlete 1: 2 laps 
Athlete 2: 3 laps 

...

LapStatisticsService

Average laps: 2.5

Service Dispatch

Entity 1

transmogrify()

Entity 2

transmogrify()

Service Dispatch

Entity 1 Entity 2 Transmogrifier

transmogrify(Entity)

Service Dispatch

Entity 1 Entity 2 Transmogrifier

transmogrify(Entity)

How do we polymorphically transmogrify?
That is, how do we dispatch based on the entity argument?

Service Dispatch

Entity 1

visit(Transmogrifier)

Entity 2

visit(Transmogrifier)

Transmogrifier

transmogrify(Entity)

How do we polymorphically transmogrify?
That is, how do we dispatch based on the entity argument?

Service Dispatch

This algorithm served me well through the years, and when I revised
Effective C++ for its second edition in 1997, I made no changes to
this part of the book.

In 1998, however, I gave a presentation at Actel, where Arun Kundu
observed that my algorithm dictated that functions should be member
functions even when they could be implemented as non-members
that used only C's public interface. Is that really what I meant, he
asked me? In other words, if f could be implemented as a member
function or a non-friend non-member function, did I really advocate
making it a member function? I thought about it for a moment, and I
decided that that was not what I meant. I therefore modified the
algorithm to look like this:

Since then, I've been battling programmers who've taken to heart the
lesson that being object-oriented means putting functions inside the
classes containing the data on which the functions operate. After all,
they tell me, that's what encapsulation is all about.

They are mistaken.

Encapsulation

Encapsulation is a means, not an end. There's nothing inherently
desirable about encapsulation. Encapsulation is useful only because
it yields other things in our software that we care about. In particular,
it yields flexibility and robustness. Consider this struct, whose
implementation I think we'll all agree is unencapsulated:

The weakness of this struct is that it's not flexible in the face of
change. Once clients started using this struct, it would, practically
speaking, be very hard to change it; too much client code would be
broken. If we later decided we wanted to compute x and y instead of
storing those values, we'd probably be out of luck. We'd be similarly

More >>

Featured Reports

Strategy: The Hybrid Enterprise Data Center
Research: Federal Government Cloud Computing
Survey
SaaS 2011: Adoption Soars, Yet Deployment
Concerns Linger
Research: State of the IT Service Desk
Database Defenses

17
18
19
20

make f a friend of C;
}

else
make f a member function of C;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

if (f needs to be virtual)
make f a member function of C;

else if (f is operator>> or
operator<<)

{
make f a non-member function;
if (f needs access to non-public

members of C)
make f a friend of C;

}
else if (f needs type conversions

on its left-most argument)
{
make f a non-member function;
if (f needs access to non-public

members of C)
make f a friend of C;

}
else if (f can be implemented via C's

public interface)
make f a non-member function;

else
make f a member function of C;

1
2
3

struct Point {
int x, y;

};

This month, Dr. Dobb's Journal is devoted to mobile
programming. We introduce you to Apple's new Swift
programming language, discuss the perils of being
the third-most-popular mobile platform, revisit SQLite
on Android , and much more!

Download the latest issue today. >>

Live Events WebCasts

Upcoming Events

Interop ITX: The Independent Conference For Tech
Leaders (April 30 - May 4 In Las Vegas) -
InteropITX 2018
Network Transformation Summit - Presented in
Partnership with IDC - InteropITX 2018
Dark Reading's Security Pro Summit at Interop ITX
- InteropITX 2018

?

?

How Non-Member Functions Improve Encapsulation | Dr Dobb's http://www.drdobbs.com/cpp/how-non-member-functions-impro...

2 of 6 25/04/2018, 17:59

Service Dispatch

This algorithm served me well through the years, and when I revised
Effective C++ for its second edition in 1997, I made no changes to
this part of the book.

In 1998, however, I gave a presentation at Actel, where Arun Kundu
observed that my algorithm dictated that functions should be member
functions even when they could be implemented as non-members
that used only C's public interface. Is that really what I meant, he
asked me? In other words, if f could be implemented as a member
function or a non-friend non-member function, did I really advocate
making it a member function? I thought about it for a moment, and I
decided that that was not what I meant. I therefore modified the
algorithm to look like this:

Since then, I've been battling programmers who've taken to heart the
lesson that being object-oriented means putting functions inside the
classes containing the data on which the functions operate. After all,
they tell me, that's what encapsulation is all about.

They are mistaken.

Encapsulation

Encapsulation is a means, not an end. There's nothing inherently
desirable about encapsulation. Encapsulation is useful only because
it yields other things in our software that we care about. In particular,
it yields flexibility and robustness. Consider this struct, whose
implementation I think we'll all agree is unencapsulated:

The weakness of this struct is that it's not flexible in the face of
change. Once clients started using this struct, it would, practically
speaking, be very hard to change it; too much client code would be
broken. If we later decided we wanted to compute x and y instead of
storing those values, we'd probably be out of luck. We'd be similarly

More >>

Featured Reports

Strategy: The Hybrid Enterprise Data Center
Research: Federal Government Cloud Computing
Survey
SaaS 2011: Adoption Soars, Yet Deployment
Concerns Linger
Research: State of the IT Service Desk
Database Defenses

17
18
19
20

make f a friend of C;
}

else
make f a member function of C;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

if (f needs to be virtual)
make f a member function of C;

else if (f is operator>> or
operator<<)

{
make f a non-member function;
if (f needs access to non-public

members of C)
make f a friend of C;

}
else if (f needs type conversions

on its left-most argument)
{
make f a non-member function;
if (f needs access to non-public

members of C)
make f a friend of C;

}
else if (f can be implemented via C's

public interface)
make f a non-member function;

else
make f a member function of C;

1
2
3

struct Point {
int x, y;

};

This month, Dr. Dobb's Journal is devoted to mobile
programming. We introduce you to Apple's new Swift
programming language, discuss the perils of being
the third-most-popular mobile platform, revisit SQLite
on Android , and much more!

Download the latest issue today. >>

Live Events WebCasts

Upcoming Events

Interop ITX: The Independent Conference For Tech
Leaders (April 30 - May 4 In Las Vegas) -
InteropITX 2018
Network Transformation Summit - Presented in
Partnership with IDC - InteropITX 2018
Dark Reading's Security Pro Summit at Interop ITX
- InteropITX 2018

?

?

How Non-Member Functions Improve Encapsulation | Dr Dobb's http://www.drdobbs.com/cpp/how-non-member-functions-impro...

2 of 6 25/04/2018, 17:59

i.e. give up

Open Methods
• Use Jean-Louis Leroy’s openmethods.d library [4]

import openmethods;
mixin(registerMethods);

void transmogrify(virtual!Entity);

@method
void _transmogrify(Entity1 entity) {
 (...)
}

@method
void _transmogrify(Entity2 entity) {
 (...)
}

The Expressive Style

• Orthodox OOP

class A
{
 void foo() {
 ...
 }

 ...
}

A a = new A;
a.foo();

The Expressive Style

• Maximal encapsulation 
OOP

• foo only depends on the  
public interface of A

// module 1
class A
{
 ...
}

// module 2
void foo(A a) {
 ...
}

A a = new A;
a.foo(); // UFCS

The Expressive Style

• Generic / DbI design

• You can’t go back to
the orthodox style

• To which class does foo
belong to?

• Compile-time design

// module 1
class A
{
 ...
}

// module 2
void foo(A a) {
 ...
}

A a = new A;
a.foo(); // UFCS

// module 1
class A
{
 ...
}

// module 2
void foo(T)(T a) {
 ...
}

A a = new A;
a.foo(); // UFCS

The Expressive Style

• Expressive design

• The runtime counterpart
to the generic / DbI
design

• Open methods ⊃
member methods

// module 1
class A
{
 ...
}

// module 2
void foo(virtual!Object a) {
 ...
}

@method
void _foo(A entity) {
 (...)
}

A a = new A;
a.foo(); // UFCS

Case Study

Logisim
• Good educational app

• No longer maintained

• Confusing Java OOP
architecture

• Poor simulation
performance

• Non-native UI

Simbool
• Logisim compatibility

• Better multi-valued logic
support, better timing model,
bidirectional ports, etc.

• Export to Verilog / VHDL /
DHDL (“run” on FPGAs)

• JIT accelerated simulator

• Native UI planned for
Windows, macOS, Linux

OO Design Example
• Domain-driven design book example

OO Design Example
• Domain-driven design book example

[Team LiB]

Chapter One. Crunching Knowledge
A few years ago, I set out to design a specialized software tool for pr inted-circuit board (PCB)
design. One catch: I didn't know anything about elect ronic hardware. I had access to som e PCB
designers, of course, but they typically got m y head spinning in three m inutes. How was I going to
understand enough to write this software? I certainly wasn't going to becom e an elect r ical
engineer before the delivery deadline!

We t r ied having the PCB designers tell m e exact ly what the software should do. Bad idea. They
were great circuit designers, but their software ideas usually involved reading in an ASCI I file,
sort ing it , writ ing it back out with som e annotat ion, and producing a report . This was clearly not
going to lead to the leap forward in product ivity that they were looking for.

The first few m eet ings were discouraging, but there was a glim m er of hope in the reports they
asked for. They always involved "nets" and various details about them . A net , in this dom ain, is
essent ially a wire conductor that can connect any num ber of com ponents on a PCB and carry an
elect r ical signal to everything it is connected to. We had the first elem ent of the dom ain m odel.

Figure 1 .1 .

I started drawing diagram s for them as we discussed the things they wanted the software to do. I
used an inform al variant of object interact ion diagram s to walk through scenarios.

Figure 1 .2 .

OO Design Example
• Domain-driven design book example

[Team LiB]

Chapter One. Crunching Knowledge
A few years ago, I set out to design a specialized software tool for pr inted-circuit board (PCB)
design. One catch: I didn't know anything about elect ronic hardware. I had access to som e PCB
designers, of course, but they typically got m y head spinning in three m inutes. How was I going to
understand enough to write this software? I certainly wasn't going to becom e an elect r ical
engineer before the delivery deadline!

We t r ied having the PCB designers tell m e exact ly what the software should do. Bad idea. They
were great circuit designers, but their software ideas usually involved reading in an ASCI I file,
sort ing it , writ ing it back out with som e annotat ion, and producing a report . This was clearly not
going to lead to the leap forward in product ivity that they were looking for.

The first few m eet ings were discouraging, but there was a glim m er of hope in the reports they
asked for. They always involved "nets" and various details about them . A net , in this dom ain, is
essent ially a wire conductor that can connect any num ber of com ponents on a PCB and carry an
elect r ical signal to everything it is connected to. We had the first elem ent of the dom ain m odel.

Figure 1 .1 .

I started drawing diagram s for them as we discussed the things they wanted the software to do. I
used an inform al variant of object interact ion diagram s to walk through scenarios.

Figure 1 .2 .

OO Design Example
• Domain-driven design book example

PCB Expert 1 : The com ponents wouldn't have to be chips.

Developer (Me) : So I should just call them "com ponents"?

Expert 1 : We call them "com ponent instances." There could be m any of the sam e com ponent .

Expert 2 : The "net " box looks just like a com ponent instance.

Expert 1 : He's not using our notat ion. Everything is a box for them , I guess.

Developer: Sorry to say, yes. I guess I 'd bet ter explain this notat ion a lit t le m ore.

They constant ly corrected m e, and as they did I started to learn. We ironed out collisions and
am biguit ies in their term inology and differences between their technical opinions, and they
learned. They began to explain things m ore precisely and consistent ly, and we started to develop a
m odel together.

Expert 1 : I t isn't enough to say a signal arr ives at a ref-des, we have to know the pin.

Developer: Ref-des?

Expert 2 : Sam e thing as a com ponent instance. Ref-des is what it 's called in a part icular tool we
use.

Expert 1 : Anyhow, a net connects a part icular pin of one instance to a part icular pin of another.

Developer: Are you saying that a pin belongs to only one com ponent instance and connects to
only one net?

Expert 1 : Yes, that 's r ight .

Expert 2 : Also, every net has a topology, an arrangem ent that determ ines the way the elem ents
of the net connect .

Developer: OK, how about this?

Figure 1 .3 .

To focus our explorat ion, we lim ited ourselves, for a while, to studying one part icular feature. A

OO Design Example
• Domain-driven design book example

"probe sim ulat ion" would t race the propagat ion of a signal to detect likely sites of certain kinds of
problem s in the design.

Developer: I understand how the signal gets carr ied by the Net to all the Pins at tached, but how
does it go any further than that? Does the Topology have som ething to do with it?

Expert 2 : No. The com ponent pushes the signal through.

Developer: We certainly can't m odel the internal behavior of a chip. That 's way too com plicated.

Expert 2 : We don't have to. We can use a sim plificat ion. Just a list of pushes through the
com ponent from certain Pins to certain others.

Developer: Som ething like this?

[With considerable t r ial-and-error, together we sketched out a scenario.]

Figure 1 .4 .

Developer: But what exact ly do you need to know from this com putat ion?

Expert 2 : We'd be looking for long signal delays—say, any signal path that was m ore than two or
three hops. I t 's a rule of thum b. I f the path is too long, the signal m ay not arr ive during the clock
cycle.

Developer: More than three hops.... So we need to calculate the path lengths. And what counts
as a hop?

Expert 2 : Each t im e the signal goes over a Net , that 's one hop.

Developer: So we could pass the num ber of hops along, and a Net could increm ent it , like this.

Figure 1 .5 .

OO Design Example
• Domain-driven design book example

Developer: The only part that isn't clear to m e is where the "pushes" com e from . Do we store
that data for every Com ponent I nstance?

Expert 2 : The pushes would be the sam e for all the instances of a com ponent .

Developer: So the type of com ponent determ ines the pushes. They'll be the sam e for every
instance?

Figure 1 .6 .

Expert 2 : I 'm not sure exact ly what som e of this m eans, but I would im agine stor ing push-
throughs for each com ponent would look som ething like that .

Developer: Sorry, I got a lit t le too detailed there. I was just thinking it through. . . . So, now,
where does the Topology com e into it?

Expert 1 : That 's not used for the probe sim ulat ion.

Developer: Then I 'm going to drop it out for now, OK? We can bring it back when we get to those
features.

And so it went (with m uch m ore stum bling than is shown here) . Brainstorm ing and refining;
quest ioning and explaining. The m odel developed along with m y understanding of the dom ain and

OO Design Example
• Domain-driven design book example

OO Design Example
• This is a model of the problem

• Why are we assuming the most straightforward solution
looks like the problem?

• Why are we assuming the component stores the pushes?

Simbool Design
• Classes?

• Circuit

• Component

• Pin

• Port

• Value

• Wire

• …

• Responsibilities?

Simbool Design

• A revisionist account of how the design came to be… 
 
 
 

• No classes yet. I was just thinking about the computation

bool input;
bool output;
output = !input;

  
 
 
 
  
 

• How do we generalize this?

Simbool Design

bool a;
bool b;
bool c;
bool d;
b = !a;
c = !b;
d = b && c

  
 
 
 
  
 

• How do we generalize this?

Simbool Design

bool a;
bool b;
bool c;
bool d;
b = !a;
c = !b;
d = b && c

bool a;
bool b;
bool c;
bool d;
b = !a;
c = !b;
d = b && c

Simbool Design
bool[] state;

class ComponentInstance
{
 ValueRef[] ports;
}

alias ValueRef = bool*;
//alias ValueRef = int;

bool a;
bool b;
bool c;
bool d;
b = !a;
c = !b;
d = b && c

Simbool Design

1 0 1 0

bool[] state;

class ComponentInstance
{
 ValueRef[] ports;
}

alias ValueRef = bool*;
//alias ValueRef = int;

a b c d

Simbool Design
• Many-valued logic

• False (0)

• True (1)

• Floating (high impedance)

• Weak low (pull-down resistor)

• Weak high (pull-up resistor)

• Forcing unkown / error

• Weak unknown

Value a;
Value b;
Value c;
Value d;
b = !a;
c = !b;
d = b && c

Simbool Design
Value[] state;

class ComponentInstance
{
 ValueRef[] ports;
}

alias ValueRef = Value*;
struct Value { ... }

1 0 1 0

a b c d

Simbool Design

Time

Simbool Design

Time

delta cycles

Simbool Design

Value a;
Value b;
Value c;
Value d;
b = !a;
c = !b;
d = b && c

Value[] state;

class ComponentInstance
{
 ValueRef[] ports;
}

d = b && c
c = !b;
b = !a;

1 0 1 0

a b c d

Simbool Design

Value a;
Value b;
Value c;
Value d;
b = !a;
c = !b;
d = b && c

Value[] state;

class ComponentInstance
{
 ValueRef[] ports;
}

d = b && c
c = !b;
b = !a;

1 0 1 0

a b c d

Simbool Design

0
0

1
1 Value[2][] values;

class ComponentInstance
{
 ValueRef[] ports;
}

alias ValueRef = Value[2]*;
struct Value { ... }

Simbool Design

0
0

1
1

1
0

1
1

Value[2][] values;

class ComponentInstance
{
 ValueRef[] ports;
}

alias ValueRef = Value[2]*;
struct Value { ... }

Simbool Design

0
0

1
1

1
0

1
1

1
1

0
1

Value[2][] values;

class ComponentInstance
{
 ValueRef[] ports;
}

alias ValueRef = Value[2]*;
struct Value { ... }

Simbool Design

Value[2][] values;

class ComponentInstance
{
 ValueRef[] ports;
}

alias ValueRef = Value[2]*;
struct Value { ... }

0
0

1
1

1
0

1
1

1
1

0
1

1
1

0
0

Simbool Design

Simbool Design

Simbool Design

Simbool Design

Simbool Design

This happens in Logisim

Simbool Design

This happens in Logisim

These introduce 1 delta cycle of delay each
Not a good timing model

Simbool Design

semantics

component tree

• Keep two representations?

• Introduce execution priority?

Simbool Design

must combine (true + false)

you can’t just do (E - true)

Simbool Design
class Signal
{
 Value value;
 Value[] drivers;
 ...
}

class ComponentInstance
{
 PortInstance[] ports;
 ...
}

struct PortInstance
{
 Signal signal;
 int driver = -1;
}

signal 1 (1 driver)

signal 2 (1 driver)

Simbool Design
class Signal
{
 Value value;
 Value[] drivers;
 ...
}

class ComponentInstance
{
 PortInstance[] ports;
 ...
}

struct PortInstance
{
 Signal signal;
 int driver = -1;
}

signal 1 (1 driver)

signal 2 (1 driver)

signal 1 (2 drivers)

Simbool Design
class Signal
{
 Value value;
 Value[] drivers;
 ...
}

class ComponentInstance
{
 PortInstance[] ports;
 ...
}

struct PortInstance
{
 Signal signal;
 int driver = -1;
}

Simbool Design
signal 1

class Signal
{
 Value value;
 Value[] drivers;
 ...
}

class ComponentInstance
{
 PortInstance[] ports;
 ...
}

struct PortInstance
{
 Signal signal;
 int driver = -1;
}

Simbool Design
signal 1 signal 2

class Signal
{
 Value value;
 Value[] drivers;
 ...
}

class ComponentInstance
{
 PortInstance[] ports;
 ...
}

struct PortInstance
{
 Signal signal;
 int driver = -1;
}

Simbool Design
class Signal
{
 Value value;
 Value[] drivers;
 ...
}

class ComponentInstance
{
 PortInstance[] ports;
 ...
}

struct PortInstance
{
 Signal signal;
 int driver = -1;
}

• We’ve arrived at our design by
thinking about the computation
we wanted to perform

• Avoided architecture astronaut
type decisions

• We only abstracted what we
actually needed to abstract

• We improved the encapsulation

Abstraction Frontier

Component

state, location

instantiate()

evaluate()

draw()

getBounds()

getLocation()

Logisim

Component

state

Simbool • Simbool’s Component
classe’s single
responsibility: maintain the
simulation state

• How do we simulate
them?

• How do we draw the
components?

• How do we know where to
draw them?

Abstraction Frontier
• Orthodox OOP Design:

• AndGate

• Maximal encapsulation OOP:

• AndGate

• AndGateGUI

• Expressive style:

• AndGate

• simulate open method

• draw open method

AndGate
state, location

simulate()

draw()

…

AndGate

state

simulate()

…

AndGateGUI

gate, location

draw()

…

AndGate

state

simulate

draw

DocComponent

component,

location

Abstraction Frontier
• Maximal encapsulation OOP: 

 
 
 

• Expressive style:  
 
 
 
 
 

void render() {
 ComponentGUI cg; // AndGateGUI
 cg.draw();
}

void draw(DocComponent, virtual!Component);

void render() {
 DocComponent dc;
 auto comp = dc.component
 draw(dc, comp);
}

void render() {
 ComponentGUI cg; // AndGateGUI
 cg.draw();
}

void draw(DocComponent, virtual!Component);

void render() {
 DocComponent dc;
 auto comp = dc.component
 draw(dc, comp);
}

Abstraction Frontier
• sim package only knows about the

simulation

• All you need for the actual simulation

• doc package knows about document
geometry semantics (depends on sim)

• “Do these wires join?”

• gui knows about both the simulation state
(i.e. in which state to draw the components)
and the document geometry (where to
draw them; depends on both)

• Example abstraction frontiers (not entity-oriented)

Abstraction Frontier

Simulation

Circuit

CircuitInstance

Wire

WireInstance

Component
ComponentInstance

Pin

Document

DocComponent

Library

WireSegment

Label

• Example abstraction frontiers (not entity-oriented)

Abstraction Frontier

Simulation

Circuit

CircuitInstance

Wire

WireInstance

Component
ComponentInstance

Pin

Document

DocComponent

Library

WireSegment

Label draw()

Object Graphs

Game

Player

Gun

Ammo

Object Graphs

Game

Player

Gun

Ammo

• Law of Demeter?

• no obj 
 .getX() 
 .getY() 
 .getZ() 
 .doSomething()

Object Graphs

Game

Player

Gun

Ammo

• Law of Demeter?

• no obj 
 .getX() 
 .getY() 
 .getZ() 
 .doSomething()

• Not great for performance

Object Graphs

• We know which
simulation we are
simulating at the point of
execution

• Why store redundant
information in the
component instance?

Simulation

Circuit

CircuitInstance

Component 
Instance

Object Graphs

• We know which
simulation we are
simulating at the point of
execution

• Why store redundant
information in the
component instance?

evaluate(Simulation, virtual!ComponentInstance);

Simulation

Circuit

CircuitInstance

Component 
Instance

Memory Allocation
• In OOP, objects are an island of abstraction

• They live by themselves, have references to other
objects

• Each object knows how to create itself (ctor)

• When that’s not the case, we use a special name

• We have context that we can use at the point of allocation

ComponentInstance instantiate(Simulation, 
virtual!Component, CircuitInstance parentInstance);

• AndGate and Register inherit from Component

• OOP mindset:

• Component provides an abstract simulation method

• AndGate knows how an AND gate actually works

• Nobody else has to know it

• That’s the point of messaging! The object interprets
the message!

OOP Assessment

• Truth:

• The AndGate type indicates what should be simulated

• Two simulation services:

• The interpreter (evaluate open method)

• The JIT

• Conclusion: OOP perspective wasn’t very illuminating

OOP Assessment

• Keeping nimble despite uncertain requirements

• Use minimal abstractions

• size_t

• Accessor methods vs const reference

• alias ValueRef = …

• Validate the design first. Only abstract what would be a
pain to change later

OOP Assessment

OOP Assessment

• Why is OOP appealing?

• Main header syndrome

• GUI classes

Testing
• Empire refactoring experience

• Not OOP (yet easier to work with than many other code bases!)

• No tests

• Michael Feathers: legacy code is code without tests

• Create unit tests for everything?

• Too much work!

• Not even clear what the exact game rules were

• Smarter alternative

Testing
• Empire refactoring experience

• Set up 1+ games (different seeds), with no UI

• Record all game messages and the map state to a buffer

• Hash the buffer (SHA-1)

• Check that the code about to be refactored is covered by the test, using
the -cov option

• Refactor

• Run the test again; compare the hash

• Worked amazingly well (fast and effective)

Testing
• Simulation, document, GUI are separate packages

• Orthodox advice would be to have separate unit tests

• Started out with simulation unittest blocks

• The tests were very verbose

• Replaced those with integrated tests

• Design circuit in GUI; save to file; read file in test; simulate; assert the
desired property

• Easier to visually debug wrong results

• Can compare results with Logisim

Conclusion
• Don’t assume two classes always have to hide all of their internals from each

other (orthodox OOP). There may be better lines along which to define
abstraction frontiers, possibly cutting across entities.

• Consider thinking of the computation first, and only then what abstractions
better support it

• Program to the public interface; don’t make it a member

• A foo method on class C only works for C objects and subclasses

• A template function works for any compatible type

• An open method is the runtime counterpart

• DbI ❤ open methods. Sitting in a tree. KISSing

References
1. Meyers, Scott. How Non-Member Functions Improve

Encapsulation. <http://www.drdobbs.com/cpp/how-non-
member-functions-improve-encapsu/184401197>

2. Marques, Luís. A defense of so-called anemic domain
models. < http://www.coredump.xyz/meetup%20-
%20anemic%20domain%20models.pdf>

3. Core Dump Podcast, episode 1. 
<http://www.coredump.xyz/1>

4. Leroy, Jean-Louis. openmethods.d. 
<https://code.dlang.org/packages/openmethods>

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197
http://www.coredump.xyz/meetup%20-%20anemic%20domain%20models.pdf
http://www.coredump.xyz/meetup%20-%20anemic%20domain%20models.pdf
http://www.coredump.xyz/meetup%20-%20anemic%20domain%20models.pdf
https://code.dlang.org/packages/openmethods

