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D Programming Language
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Many Keys to Performance

● better algorithms
● low level optimizations
● memory caching / layout
● code caching / layout
● multithreading
● and ...



  

Allocating Memory is Critical
for Non-Trivial Programs

● D supports multiple methods
● different methods can be used for different 

purposes in the same program
● there is no one-size-fits-all
● dramatic differences in performance, memory 

consumption, ease of programming, etc.



  

Automatic Memory Management



  

Advantages

● easy
● memory safe
● faster to write code
● handles cycles



  

Disadvantages

● uses 3x the memory
● pause while collection runs
● indeterminate when destructor is run
● long running programs can exhaust memory 

due to pinning



  

Use For

● smaller programs (like scripts)
● parts of code that are rarely run

– initialization

– error handling

● batch utilities
● where dev costs are higher than compute costs



  

malloc / free



  

Advantages

● familiar, well understood
● fast
● compact
● well implemented
● interoperate with C code



  

Disadvantages

● no memory safety checks
● dangling pointers
● memory leaks
● double frees
● very hard to audit



  

Use For

● compute time is far costlier than dev time
● experienced devs are available

– of course, can't get experience without using malloc 
/ free

● not a disaster when the program fails
– because experience shows it will fail



  

Making Your Own malloc / free

● to instrument it
● add sentinels
● application specific allocation strategy
● try your hand at making it faster



  

The Memory Safe malloc()

Impocerous!

… or is it?



  

There's a Trick to It!

● just allocate, never free!
● very fast
● use for data that lasts until program exit
● use for batch processing

– like (cough) compilers (cough)



  

import core.stdc.stdio, core.stdc.stdlib;

static size_t heapLeft = 0;
static void* heapPtr;

void* heapAlloc(size_t nbytes) {
    static void error() {
        printf("Error: out of memory\n");  
        exit(EXIT_FAILURE);
        assert(0);
    }

    // 16 byte alignment is better
    // (sometimes needed) for doubles
    const sz = (nbytes + 15) & ~15;

    // code layout is so most
    // common case is straight through
    if (sz <= heapLeft) {
     L1:
        heapLeft -= sz;
        void *p = heapPtr;
        heapPtr += sz;
        return p;
    }

    enum ChunkSize = (4096 * 16);
    if (sz > ChunkSize) {
        if (auto p = malloc(sz))
            return p;
        error();
    }

    heapLeft = ChunkSize;
    heapPtr = malloc(ChunkSize);
    if (!heapPtr)
        error();  
    goto L1;
}

void heapFree(void *p) { }



  

Scope Guard

● method for hooking how a function exits, and 
attaches code to it
– both normal and exception (i.e. error) exits

● related to try-catch-finally
– in fact, the compiler converts scope guard 

statements to try-catch-finally



  

For Example

import core.stdc.stdlib;

auto p = cast(T*)malloc(length * T.sizeof);
assert(!length || p);
auto array = p[0 .. length];
scope (exit) free(array.ptr);
...



  

Pros and Cons

● natural, readable, convenient syntax
● resolves the dreaded “forgot to free it when 

exiting early”
● resolves the dreaded “forgot to free it when 

exceptions were thrown” (i.e. it is exception 
safe)

● still vulnerable to the other problems with 
malloc/free



  

RAII (aka Destructors)

The Simpsons



  

struct S(T) {
    import core.stdc.stdlib;
    this(size_t length) {
        auto p = cast(T*)malloc(length * T.sizeof);
        assert(!length || p);
        T[ ] array = p[0 .. length];
    }
    ~this() { free(array.ptr); }
    T[ ] array;
}
     
{
    auto s = S!int(10);
    ...
}



  

Pros / Cons

● well understood
● exception safe
● nobody ever got fired for using RAII
● still vulnerable to dangling pointers
● only workable when there's one owner
● doesn't work so well with cyclic graphs



  

Reference Counting

Walter Crane



  

struct S(T) {  
    import core.stdc.stdlib;
    this(size_t length) {
        auto p = cast(T*)malloc(length * T.sizeof);
        assert(!length || p);
        array = p[0 .. length];
        auto pcount = cast(size_t*)malloc(size_t.sizeof);
        assert(pcount);
        *pcount = 1;
    }
    this(ref S s) {
        array = s.array;
        pcount = s.pcount;
        ++*pcount;
    }
    ~this() { if (--*pcount == 0) { free(array.ptr); free(pcount); }
    void opAssign(ref S s) {
        auto tmparray = array;
        auto tmppcount = pcount;
        array = s.array;
        pcount = s.pcount;
        ++*pcount;
        if (--*tmppcount == 0) { free(tmparray.ptr); free(tmppcount); }
    }
    T[ ] array;
    size_t* pcount;
}



  

Advantages

● no pauses
● memory reclaimed as soon as possible



  

Disadvantages

● cycles
● expensive due to exception handling
● can be slower than automatic memory 

management!



  

Stack



  

T[100] tmp = void;
T[ ] buffer = tmp[0 .. length];
...



  

Advantages

● pretty much free
● automatic cleanup at zero cost
● no worries about exception handling
● don't forget `= void;` initialization!



  

Disadvantages

● what if the buffer is too small?
– then you've got to add error handling code

● running out of stack space
– especially for small embedded systems or ones 

where you're running a zillion concurrent threads



  

Hybrid stack / malloc



  

debug
    enum tmplen = 2;
else
    enum tmplen = 100;

T[tmplen] tmp = void;
T[ ] buffer;
if (length <= tmp.length)
    buffer = tmp[0 .. length];
else {
    auto p = cast(T*)malloc(length * T.sizeof);
    assert(!length || p);
    buffer = p[0 .. length];
}
...
if (buffer.ptr != tmp.ptr)
    free(buffer.ptr);



  

Do some testing to pick good value for tmplen so 
malloc is rarely hit in practice.

Of course, for debugging use a small value so the 
malloc path gets tested properly.

I use this technique a lot. It's fast and effective. 



  

Hybrid Stack / malloc with 
Voldemort Types

<Insert Picture Here>



  

auto tmpBuf(T)(size_t length) {
    static struct Result {
        void initialize(size_t length) {
            if (length <= tmp.length)
                buffer = tmp[0 .. length];
            else {
                auto p = cast(T*)malloc(length * T.sizeof);
                assert(!length || p);
                buffer = p[0 .. length];
            }
        }
        ~this() { if (buffer.ptr != tmp.ptr) free(buffer.ptr); }
        T[ ] buffer = void;
        T[100] tmp = void;
    }
    Result result = void;
    result.initialize(length);
    return result;
}

…
auto buffer = tmpBuf!T(length);



  

 

● Nicely encapsulates the allocation and cleanup
● Still uses the stack of the caller!

– through the magic of the Named Return Value 
optimization



  

No-Allocation Allocations using 
Chain



  

 

● no allocation at all
● done with ranges and slices
● can be very efficient
● predictable



  

auto chain(string s1, string s2) {
  struct Chain {
    string s1, s2;
    bool empty() {
      return s1.length == 0 &&
                 s2.length == 0;
    }
    char front() {
      return s1.length
         ? s1[0]
          : s2[0];
    }
    void popFront() {
      if (s1.length)
        s1 = s1[1 .. $];
      else
        s2 = s2[1 .. $];
    }
  }
  return Chain(s1, s2);
}

import core.stdc.stdio;

int main() {
  auto r = chain("hello", " betty");
  foreach (c; r)
    printf("%c", c);
  printf("\n");
  return 0;
}



  

● same caveats as slices
● watch lifetimes of s1 and s2
● https://dlang.org/phobos/std_range.html#chain

– for more general implementation

https://dlang.org/phobos/std_range.html#chain


  

Summary

● automatic memory management
● malloc / free
● memory safe malloc
● scope guard
● RAII
● reference counting
● stack, hybrid stack and Voldemort hybrid stack
● chaining
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