

Allocating Memory with the
D Programming Language

by Walter Bright

Many Keys to Performance

● better algorithms
● low level optimizations
● memory caching / layout
● code caching / layout
● multithreading
● and ...

Allocating Memory is Critical
for Non-Trivial Programs

● D supports multiple methods
● different methods can be used for different

purposes in the same program
● there is no one-size-fits-all
● dramatic differences in performance, memory

consumption, ease of programming, etc.

Automatic Memory Management

Advantages

● easy
● memory safe
● faster to write code
● handles cycles

Disadvantages

● uses 3x the memory
● pause while collection runs
● indeterminate when destructor is run
● long running programs can exhaust memory

due to pinning

Use For

● smaller programs (like scripts)
● parts of code that are rarely run

– initialization

– error handling

● batch utilities
● where dev costs are higher than compute costs

malloc / free

Advantages

● familiar, well understood
● fast
● compact
● well implemented
● interoperate with C code

Disadvantages

● no memory safety checks
● dangling pointers
● memory leaks
● double frees
● very hard to audit

Use For

● compute time is far costlier than dev time
● experienced devs are available

– of course, can't get experience without using malloc
/ free

● not a disaster when the program fails
– because experience shows it will fail

Making Your Own malloc / free

● to instrument it
● add sentinels
● application specific allocation strategy
● try your hand at making it faster

The Memory Safe malloc()

Impocerous!

… or is it?

There's a Trick to It!

● just allocate, never free!
● very fast
● use for data that lasts until program exit
● use for batch processing

– like (cough) compilers (cough)

import core.stdc.stdio, core.stdc.stdlib;

static size_t heapLeft = 0;
static void* heapPtr;

void* heapAlloc(size_t nbytes) {
 static void error() {
 printf("Error: out of memory\n");
 exit(EXIT_FAILURE);
 assert(0);
 }

 // 16 byte alignment is better
 // (sometimes needed) for doubles
 const sz = (nbytes + 15) & ~15;

 // code layout is so most
 // common case is straight through
 if (sz <= heapLeft) {
 L1:
 heapLeft -= sz;
 void *p = heapPtr;
 heapPtr += sz;
 return p;
 }

 enum ChunkSize = (4096 * 16);
 if (sz > ChunkSize) {
 if (auto p = malloc(sz))
 return p;
 error();
 }

 heapLeft = ChunkSize;
 heapPtr = malloc(ChunkSize);
 if (!heapPtr)
 error();
 goto L1;
}

void heapFree(void *p) { }

Scope Guard

● method for hooking how a function exits, and
attaches code to it
– both normal and exception (i.e. error) exits

● related to try-catch-finally
– in fact, the compiler converts scope guard

statements to try-catch-finally

For Example

import core.stdc.stdlib;

auto p = cast(T*)malloc(length * T.sizeof);
assert(!length || p);
auto array = p[0 .. length];
scope (exit) free(array.ptr);
...

Pros and Cons

● natural, readable, convenient syntax
● resolves the dreaded “forgot to free it when

exiting early”
● resolves the dreaded “forgot to free it when

exceptions were thrown” (i.e. it is exception
safe)

● still vulnerable to the other problems with
malloc/free

RAII (aka Destructors)

The Simpsons

struct S(T) {
 import core.stdc.stdlib;
 this(size_t length) {
 auto p = cast(T*)malloc(length * T.sizeof);
 assert(!length || p);
 T[] array = p[0 .. length];
 }
 ~this() { free(array.ptr); }
 T[] array;
}

{
 auto s = S!int(10);
 ...
}

Pros / Cons

● well understood
● exception safe
● nobody ever got fired for using RAII
● still vulnerable to dangling pointers
● only workable when there's one owner
● doesn't work so well with cyclic graphs

Reference Counting

Walter Crane

struct S(T) {
 import core.stdc.stdlib;
 this(size_t length) {
 auto p = cast(T*)malloc(length * T.sizeof);
 assert(!length || p);
 array = p[0 .. length];
 auto pcount = cast(size_t*)malloc(size_t.sizeof);
 assert(pcount);
 *pcount = 1;
 }
 this(ref S s) {
 array = s.array;
 pcount = s.pcount;
 ++*pcount;
 }
 ~this() { if (--*pcount == 0) { free(array.ptr); free(pcount); }
 void opAssign(ref S s) {
 auto tmparray = array;
 auto tmppcount = pcount;
 array = s.array;
 pcount = s.pcount;
 ++*pcount;
 if (--*tmppcount == 0) { free(tmparray.ptr); free(tmppcount); }
 }
 T[] array;
 size_t* pcount;
}

Advantages

● no pauses
● memory reclaimed as soon as possible

Disadvantages

● cycles
● expensive due to exception handling
● can be slower than automatic memory

management!

Stack

T[100] tmp = void;
T[] buffer = tmp[0 .. length];
...

Advantages

● pretty much free
● automatic cleanup at zero cost
● no worries about exception handling
● don't forget `= void;` initialization!

Disadvantages

● what if the buffer is too small?
– then you've got to add error handling code

● running out of stack space
– especially for small embedded systems or ones

where you're running a zillion concurrent threads

Hybrid stack / malloc

debug
 enum tmplen = 2;
else
 enum tmplen = 100;

T[tmplen] tmp = void;
T[] buffer;
if (length <= tmp.length)
 buffer = tmp[0 .. length];
else {
 auto p = cast(T*)malloc(length * T.sizeof);
 assert(!length || p);
 buffer = p[0 .. length];
}
...
if (buffer.ptr != tmp.ptr)
 free(buffer.ptr);

Do some testing to pick good value for tmplen so
malloc is rarely hit in practice.

Of course, for debugging use a small value so the
malloc path gets tested properly.

I use this technique a lot. It's fast and effective.

Hybrid Stack / malloc with
Voldemort Types

<Insert Picture Here>

auto tmpBuf(T)(size_t length) {
 static struct Result {
 void initialize(size_t length) {
 if (length <= tmp.length)
 buffer = tmp[0 .. length];
 else {
 auto p = cast(T*)malloc(length * T.sizeof);
 assert(!length || p);
 buffer = p[0 .. length];
 }
 }
 ~this() { if (buffer.ptr != tmp.ptr) free(buffer.ptr); }
 T[] buffer = void;
 T[100] tmp = void;
 }
 Result result = void;
 result.initialize(length);
 return result;
}

…
auto buffer = tmpBuf!T(length);

● Nicely encapsulates the allocation and cleanup
● Still uses the stack of the caller!

– through the magic of the Named Return Value
optimization

No-Allocation Allocations using
Chain

● no allocation at all
● done with ranges and slices
● can be very efficient
● predictable

auto chain(string s1, string s2) {
 struct Chain {
 string s1, s2;
 bool empty() {
 return s1.length == 0 &&
 s2.length == 0;
 }
 char front() {
 return s1.length
 ? s1[0]
 : s2[0];
 }
 void popFront() {
 if (s1.length)
 s1 = s1[1 .. $];
 else
 s2 = s2[1 .. $];
 }
 }
 return Chain(s1, s2);
}

import core.stdc.stdio;

int main() {
 auto r = chain("hello", " betty");
 foreach (c; r)
 printf("%c", c);
 printf("\n");
 return 0;
}

● same caveats as slices
● watch lifetimes of s1 and s2
● https://dlang.org/phobos/std_range.html#chain

– for more general implementation

https://dlang.org/phobos/std_range.html#chain

Summary

● automatic memory management
● malloc / free
● memory safe malloc
● scope guard
● RAII
● reference counting
● stack, hybrid stack and Voldemort hybrid stack
● chaining

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

