
Frictionless D Adoption for the Masses

or: How I Learned to Stop Worrying and Love the C Preprocessor

Átila Neves, Ph.D.

DConf, May 2019

1

If you remember just one thing. . .

• Programming is about people

2

Story time: John Montagu, the 4th Earl of Sandwich

3

Why tell a story?

• You’re now unlikely to forget the story of the invention of the sandwich

• People are sensitive to storytelling

• More parts of the brain are activated

4

In contrast. . .

• Bullet points

• Can be pretty boring

• Nobody is going to remember this slide

5

Stories are important . . .

• . . . Because they’re important to people

• And programming is about people

6

Why is Átila?

• D user since 2013

• DConf 2014 speaker

• 2014: In a new team put in charge of a legacy C codebase

7

Tests not included

8

What language?

• The test language doesn’t have to be C

• My choice was between C++ or D

• I chose C++. I didn’t want to, but I did.

9

Convincing is hard, let’s go shopping!

• Colleagues I’d never worked with

• 8 different meetings on the merits of automated testing

• If you’re arguing you’re losing (Dan Saks at CppCon 2016)

10

Change: what is good for? Absolutely Nothing

(a) Näıve model of change (b) Satir change model

• From “Peopleware: Productive Software and Teams”

• Change doesn’t happen until people feel safe

• Also from Peopleware: people dislike change

• Loss aversion: twice as powerful as similar gain

• Automated testing chaotic enough for them

11

But D can call C

• From dlang.org:

extern (C) int strcmp(const(char)* string1, const(char)* string2);

• Unnecessary: already in core.stdc.string

• Simpler than “real” code

• In reality:

extern (C) int weird_api(Foo* foo, Bar* bar, int flags);

• Foo is in foo.h, Bar in bar.h, fields in other headers

12

Preprocessor required

extern (C) int weird_api(Foo* foo, Bar* bar, int flags);

• flags meant to be calculated from a macro:

#define FLAGS(x, y, z) (((x) * 1024) | ((y) * 64) | (z))

Foo foo;

Bar bar;

weird_api(&foo, &bar, FLAGS(1, 2, 3));

// checking error codes is for amateurs

13

Preprocessor required

struct Struct {

struct Foo {

struct Bar* bar;

} foo;

};

// because typing is more important than reading

#define getvalue(x) (x).foo.bar->value

14

Issues

• Manual wrapping too laborious

• dstep didn’t work

• Warped didn’t work. . .

• Calypso was non-starter

15

The elephant in the room

extern "C" {

#include "my_api.h"

}

16

C++’s rise to power: a historic perspective

• In practice, a superset of C

• Incremental adoption at no cost

• No loss =⇒ no aversion

• Can’t lose by arguing when there’s no arguing

• C++’s killer feature: #include

• Conclusion: shamelessly copy C++’s approach

17

The goal

Emulate the C++ experience of interfacing to C:

#include "nanomsg/nn.h"

#include "nanomsg/pubsub.h"

void main() {

const sock = nn_socket(AF_SP, NN_PUB);

scope(exit) nn_close(sock);

}

18

dpp Approach

• Use libclang to parse the C headers

• Translate the C AST into D syntax

• Deal with impedance mismatch such as multiple C declarations

• Expand the translations in place

• Originally per header file

• Translations are not meant to be checked in

• Macros?

19

Enabling preprocessor macro usage

• libclang has an option to remember macros

• Redeclare all macros in the #included headers

// was: #include "header.h"

extern(C) int add(int, int);

#define MACRO 42

• Run the C preprocessor on the dpp file

• If you can’t beat them, join them

• Call a D compiler on the resulting valid D code

• Replacing the compiler is scary, wrapping it is chocolate and bunnies

20

Calling libclang from D

• Fortunately already had bindings from dstep

• Add @safe @nogc pure nothrow to every function

• Exception made for callbacks

• Add in to all parameters

• Wrote OOP-like wrapper for the C functions

21

Implementation

switch(cursor.kind) with(Cursor.Kind) {

default: return [];

case StructDecl:

string[] ret;

ret ~= `struct Foo {`;

foreach(field; cursor) {

ret ~= translateField(field);

}

ret ~= `}`;

return ret;

case FunctionDecl:

/* .. */

}

22

Implementation

with(Cursor.Kind) {

return [

StructDecl: &translateStruct,

UnionDecl: &translateUnion,

EnumDecl: &translateEnum,

FunctionDecl: &translateFunction,

FieldDecl: &translateField,

TypedefDecl: &translateTypedef,

MacroDefinition: &translateMacro,

InclusionDirective: &ignore,

EnumConstantDecl: &translateEnumConstant,

VarDecl: &translateVariable,

];

}
23

Testing

shouldCompile(

C(

q{

struct Foo { int ints[4]; };

}

),

D(

q{

auto f = Foo();

static assert(f.sizeof == 16, "Wrong sizeof for Foo");

static assert(is(typeof(Foo.ints) == int[4]));

}

),

);
24

Testing

Could not execute `dmd -o- -c app.d`:

app.d(65): Error: static assert: "Wrong sizeof for Foo"

app.d:

53: extern(C)

54: {

55: struct Foo

56: {

57: int[4] ints;

58: }

59: }

60:

61:

62: void main() {

63:

64: auto f = Foo();

65: static assert(f.sizeof == 15, "Wrong sizeof for Foo");

66: static assert(is(typeof(Foo.ints) == int[4]));

67:

68: }

}

25

To understand recursion, you must first understand recursion

• Child cursors get “sent back” to the main translation function

• Cursor types get translated in a similar recursive manner

• Bonus: not having to write production code (TDD FTW)

26

C: still surprising me after 25 years

// Apparently valid C code (who knew?)

struct BadlyNamed {

void (*why)(void);

struct why* (*func)(void);

};

// when inlining was new I guess

#define redOnesGoFaster() (42)

int (redOnesGoFaster)(void);

27

Macros: not so fast

#define OOPS1(x) (x)->foo

#define OOPS2(x) sizeof(x)

#define OOPS3(x) ((void*)(x)) // C cast (easy mode)

#define OOPS4(x) ((MyStruct*)(x)) // C cast (normal mode)

#define OOPS5(T, x) ((T*)(x)) // C cast (hard mode)

// Not valid D code

#define STRUCT_INIT(type) { STRUCT_EXTRA_INIT 1, type },

28

Does it work?

• The nanomsg slide works

• curl example just worked

• With std.string.toStringz, std.conv.text, and std.stdio.stderr

• C standard library: stdio.h (printf), stdlib.h (malloc, free)

• #include <Python.h> just worked

• Would get around 3.6 → 3.7 pyd crash

• Modulo bugs, yes!

29

#include Python!

#include "Python.h"

#include "datetime.h"

#include "structmember.h"

enum isPython3 = is(PyModuleDef);

enum isPython2 = !isPython3;

30

The holy grail

#include <vector>

vector!int v;

v.push_back(42);

• Has to be as easy as that

• Never mind the standard library: Qt? Eigen?

31

Apparently C++ is complicated

• libclang is not all it’s made out to be

• No way to query for constexpr

• No way to get a struct’s template parameters

• Algorithm to output D struct or class

• std::is reference v can’t be translated

• Almost definitely going to be used in SFINAE

• D is the only language with any hope of translating C++

• Template specialisations

• Template constraints can emulate SFINAE, std::void t, concepts?

32

Hacking around the C++ standard library

• Tell dpp to ignore everything in namespace std

• Define ignored cursors ourselves:

void takesVector(ref const(vector!int));

extern(C++, "std") {

struct allocator(T);

struct vector(T, A = allocator!T);

}

33

Conclusion

• Programming is about people

• If you’re arguing, you’re losing

• Out-C++ C++

• Go forth and #include

34

Questions?

Slide intentionally left blank

35

