

intel-intrinsics

Not intrinsically about intrinsics

By Guillaume Piolat

intel-intrinsics

Please use my library

By Guillaume Piolat

This is a talk about performance

Part 1 Speed is still important

Part 2 The D SIMD landscape

Part 3

How intel-intrinsics was made

Part 4

Choosen examples

Part 5

I'll tell you to profile your code first

Hello

Auburn Sounds is a bootstrapped
 B2C music app business

- Clients = mostly urban music producers
- Complexity = about 80 kloc of D
- Open Source core = Dplug
- Competition is 99% C++

Selling audio plug-ins

- Audio plug-ins = small dynlibs that process audio quicker than real-time
- Fierce competition
- CPU time is shared (~1%)
- Typical commercial plug-in is between 10x to 300x real-time

- Rarely mentionned by B2C consumers as long as software is fast enough
- Many Quality vs CPU trade-offs
 Speed enables better-sounding algorithms
- Audio not special

- Rarely mentionned by B2C consumers as long as software is fast enough
- Many Quality vs CPU trade-offs
 Speed enables better-sounding algorithms
- Audio not special

YOUR CUSTOMERS PROBABLY LOVE PERFORMANCE EVEN IF THEY DON'T TELL YOU

How to get faster programs?

- Measure, have a baseline, improve precision (cf. Alexandrescu talks)
- Make identified bottlenecks faster

How to get faster programs?

- Measure, have a baseline, improve precision (cf. Alexandrescu talks)
- Make identified bottlenecks faster

Single Instruction, Multiple Data helps.

But which D SIMD facility to use?

The D SIMD Landscape

(this image generated with goart.fotor.com)

Option #1: inline assembly

```
asm nothrow @nogc
£
    movd XMM0, A:
    movd XMM1, B;
    movd XMM2, C;
    movd XMM3, D;
    pxor XMM4, XMM4;
    punpcklbw XMM0, XMM4;
    punpcklbw XMM1, XMM4;
    punpcklbw XMM2, XMM4;
    punpcklbw XMM3, XMM4;
    punpcklwd XMM0, XMM4;
    punpcklwd XMM1, XMM4;
    punpcklwd XMM2, XMM4;
    punpcklwd XMM3, XMM4;
    cvtdq2ps XMM0, XMM0;
    cvtdq2ps XMM1, XMM1;
                                     }
```

cvtdq2ps XMM2, XMM2; cvtda2ps XMM3, XMM3; movss XMM4, fxm1; pshufd XMM4, XMM4, 0; movss XMM5, fx: pshufd XMM5, XMM5, ∅; mulps XMM0, XMM4; mulps XMM1, XMM5: mulps XMM2, XMM4; mulps XMM3, XMM5; movss XMM4, fym1; pshufd XMM4, XMM4, 0; movss XMM5, fv: pshufd XMM5, XMM5, 0; addps XMM0, XMM1; addps XMM2, XMM3; mulps XMM0, XMM4: mulps XMM2, XMM5; addps XMM0, XMM2; movups asmResult, XMM0;

Sample from Dplug, linear texture sampling

Option #1: using assembly

PROS

- Portable across DMD and LDC
- Predictable
- Debug performance

CONS

- Write twice, for x86 and x86_64 (except rare cases)
- Hard to write, debug, and read
- Very arch-specific

Option #1: using assembly

PROS

- Portable across DMD and LDC
- Predictable
- Debug performance

CONS

- Write twice, for x86 and x86_64 (except rare cases)
- Hard to write, debug, and read
- Very arch-specific
- Rarely the best performance
- Does not get faster over time

Option #2: core.simd

void main()

{

}

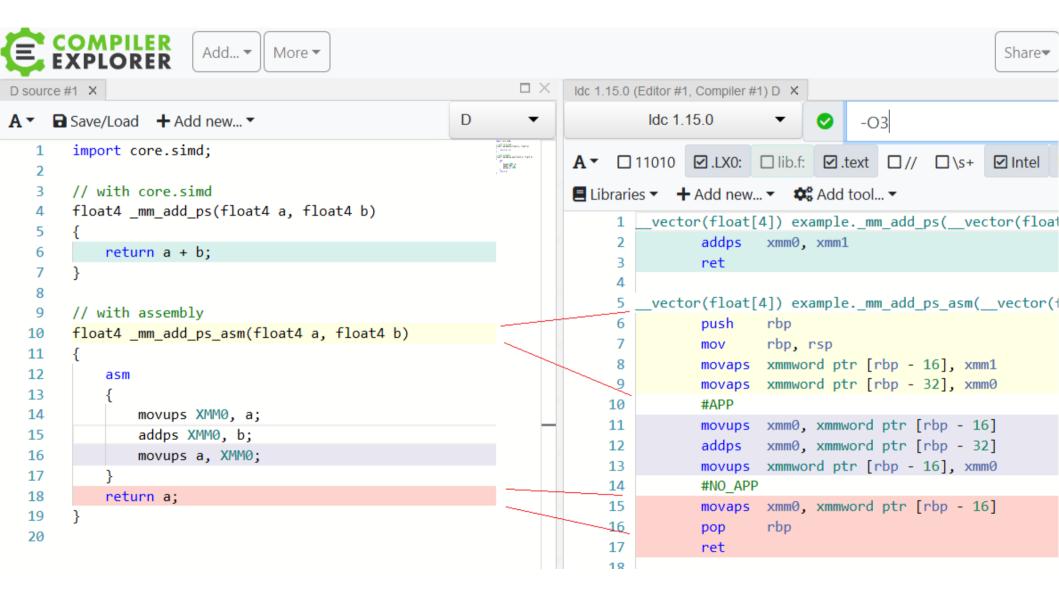
```
float4 A = [1.0f, 2, 3, 4];
// access to elements
float C = A.array[1];
A.array[0] = C;
assert(A.array[0] == 2);
```

```
// vector ops
int4 v = 7;
v = 3 + v;
```

Introduced in 2012.

Option #2: core.simd

PROS


CONS

- Portable across DMD, LDC and GDC
- Easy to read/write/debug
- Pleasant syntax

- No support in DMD + Win32
- x86 CPU have more operations than that

eg : PMADDW PSHUFB...

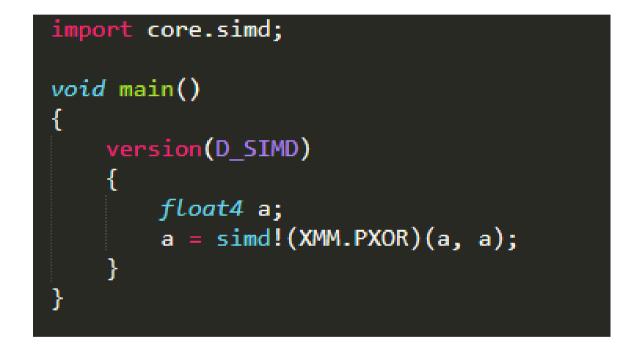
Working with the back-end

Working with the back-end

Option #2: core.simd

PROS

CONS


- Portable across DMD, LDC and GDC
- Easy to read/write/debug
- Pleasant syntax

- No support in DMD + Win32
- x86 CPU have more operations than that

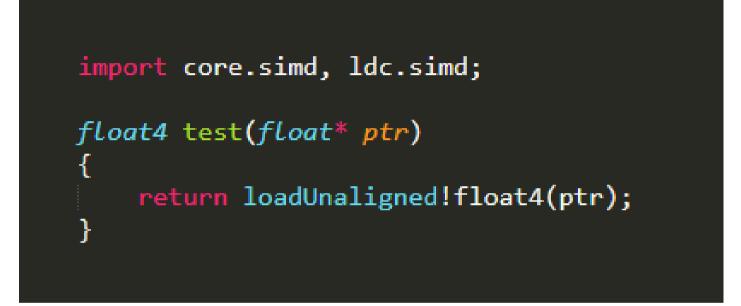
eg : PMADDW PSHUFB...

core.simd is great

Option #3: core.simd + D_SIMD

A DMD extension also introduced in 2012.

Option #3: core.simd + D_SIMD


PROS

CONS

 Good x86 instruction set support

- D_SIMD only in DMD
- again, not in Win32

Option #4: ldc.simd

Extends core.simd with portable operations:

- shufflevector
- Unaligned load/store
- and more...

Some of it made it back to core.simd

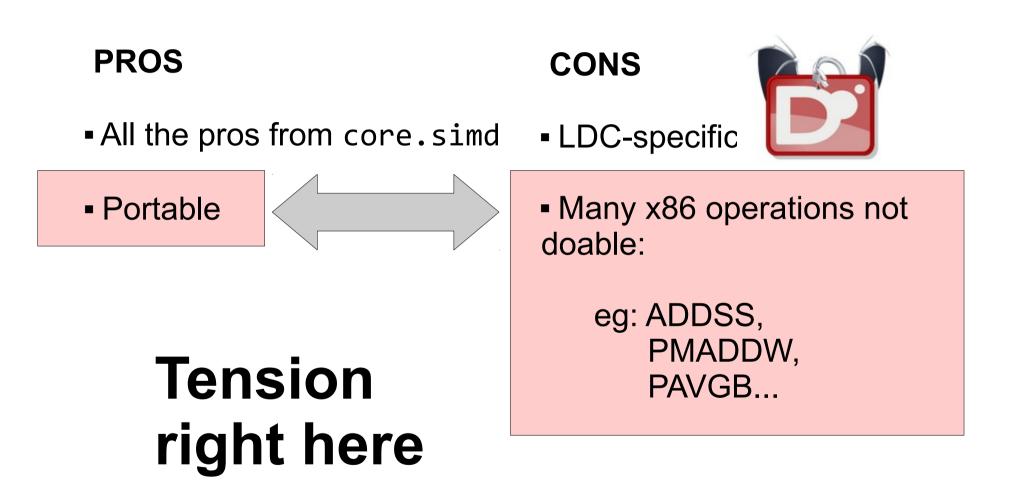
Option #4: ldc.simd

PROS

All the pros from core.simd

CONS

LDC-specific



Portable

Many x86 operations not doable:

eg: ADDSS, PMADDW, PAVGB...

Option #4: ldc.simd


```
import core.simd;
import ldc.gccbuiltins_x86;
void testSIMD()
{
    float4 A = [1.0f, 2, 3, 4];
    A = __builtin_ia32_rsqrtss(A);
}
```

Extends core.simd with some x86 builtins

PROS

CONS

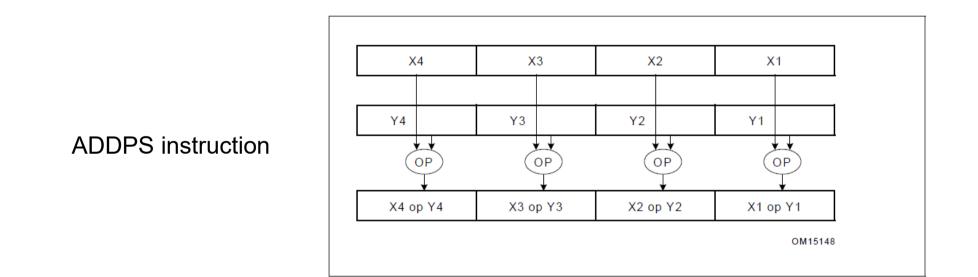
- Provide direct instruction generation.
- LDC only

PROS

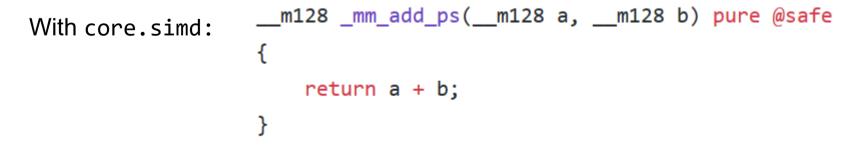
CONS

Provide direct instruction generation.

LDC only

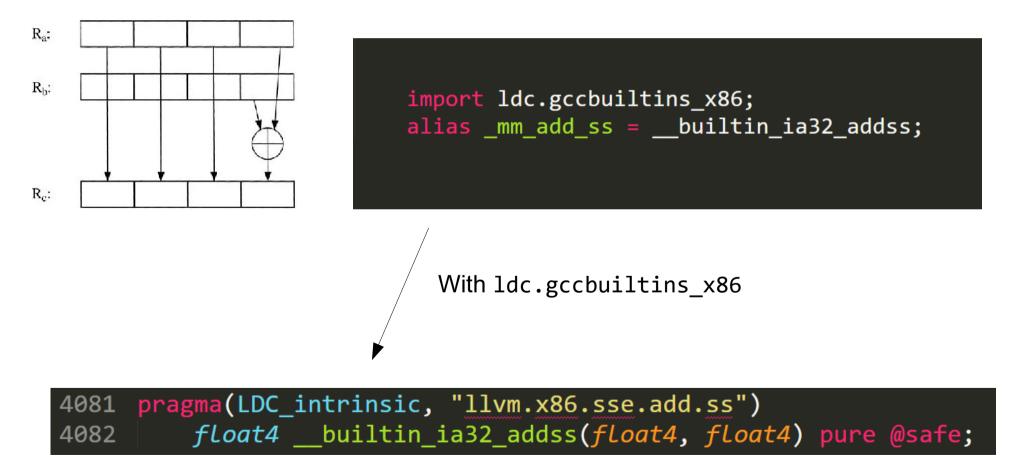


intel-intrinsics started as a familiar syntax for ldc.gccbuiltins_x86

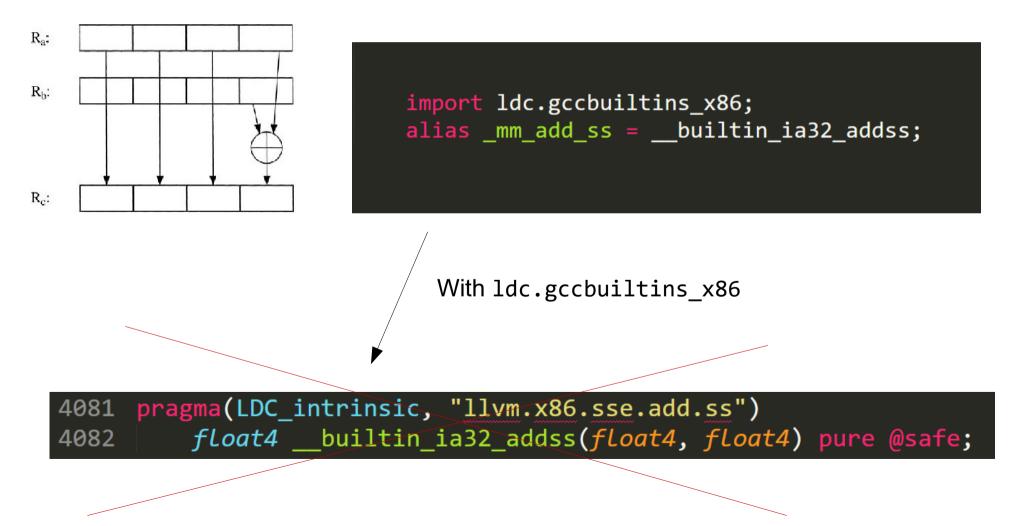


How intel-intrinsics was made

Implementing _mm_add_ps



alias __m128 = float4;


Implementing _mm_add_ss

ADDSS instruction

LDC 1.1 removed ___builtin_ia32_addss!

ADDSS instruction

PROS

Provide direct instruction generation.

LDC only

 The built-ins are disappearing over time

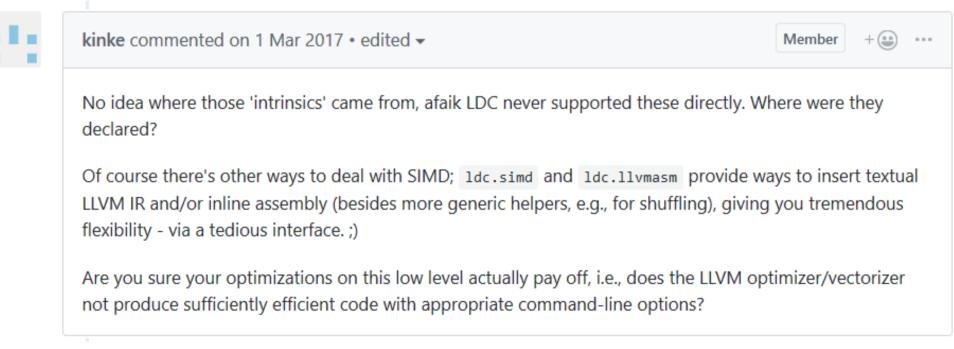
LDC 1.1 removed ___builtin_ia32_addss!

ſ	p0nce commented on 1 Mar 2017 • edited •	+ 💼	
	These intrinsics have disappeared:		
	<pre>builtin_ia32_mulss builtin_ia32_divss builtin_ia32_pmaxsw128 builtin_ia32_pmaxub128 builtin_ia32_pminsw128 builtin_ia32_pminub12' builtin_ia32_pshufd builtin_ia32_pshuffw builtin_ia32_pshuffw builtin_ia32_storelv4si builtin_ia32_storedqu builtin_ia32_storeupd</pre>		
	were in LDC 1.0 but not 1.1.		
	I guess there is another way to do it with SIMD vector extensions?		

LDC issues #2019, #2250 and #2759

What « intrinsics »?

kinke commented on 1 Mar 2017 • edited -


No idea where those 'intrinsics' came from, afaik LDC never supported these directly. Where were they declared?

Member

Of course there's other ways to deal with SIMD; ldc.simd and ldc.llvmasm provide ways to insert textual LLVM IR and/or inline assembly (besides more generic helpers, e.g., for shuffling), giving you tremendous flexibility - via a tedious interface. ;)

Are you sure your optimizations on this low level actually pay off, i.e., does the LLVM optimizer/vectorizer not produce sufficiently efficient code with appropriate command-line options?

What « intrinsics »?

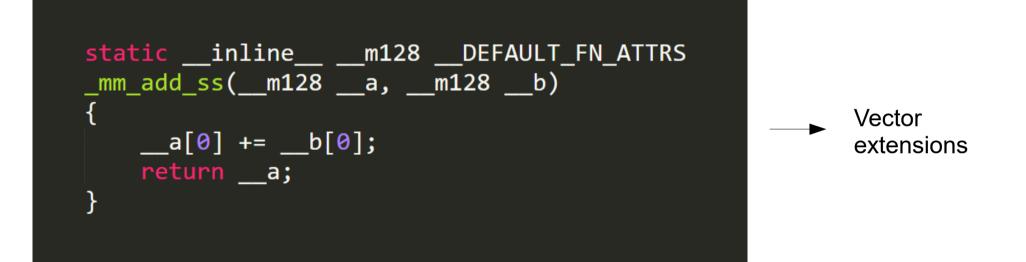
The builtins disappeared upstream, in clang.

Life on the other edge

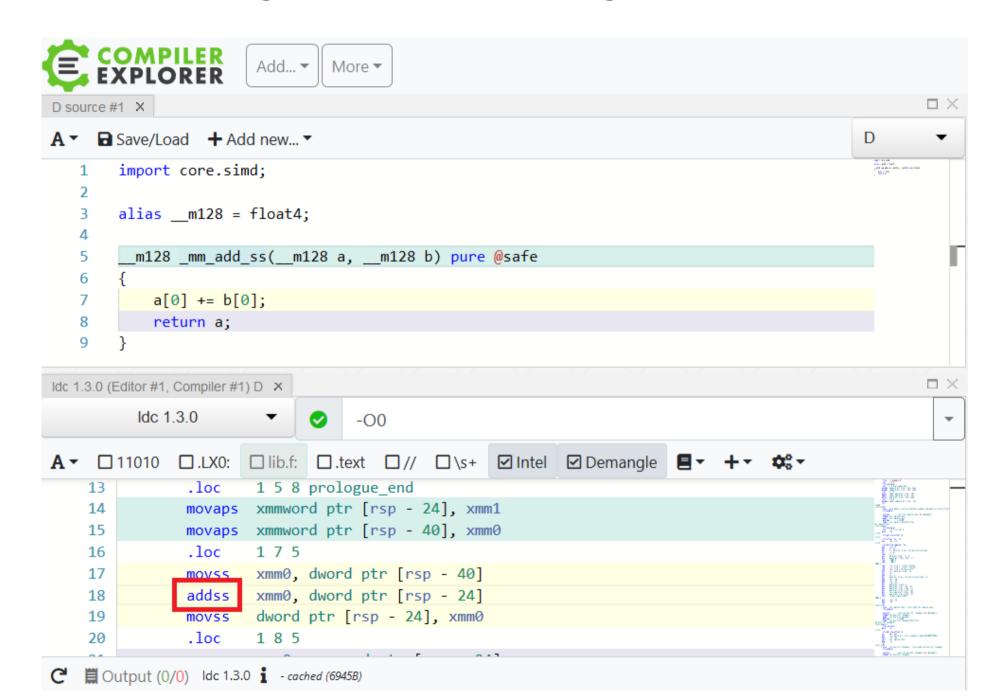
Stephen Canon Jan 14, 2013: 10:37pm Re: some sse2 intrinsics missing 17 posts

This is a builtin, not an intrinsic. The intrinsic is mm cmpgt pd. - Steve On Jan 14, 2013, at 4:32 PM, Richard Hadsell < [hidden email] > wrot It seems that Clang doesn't recognize all of the sse2 intrinsics: ./bssSIMD.h:39:9: error: use of undeclared identifier ' built: r.v = builtin ia32 cmpgtpd (x, xmax.v); ./bssSIMD.h:51:9: error: use of undeclared identifier ' built: r.v = builtin ia32 cmpltpd (x, xmin.v);

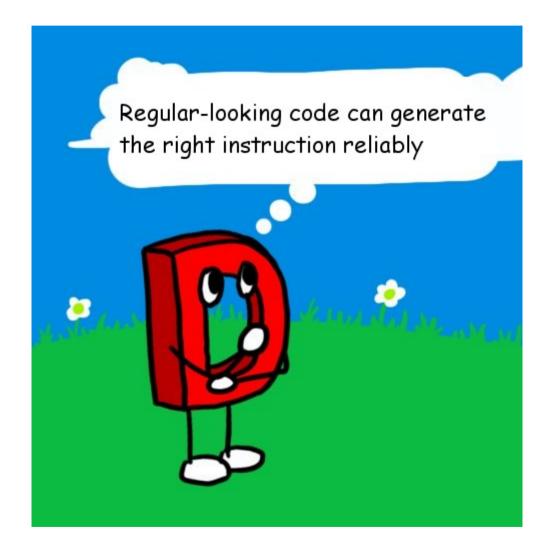
"This is a builtin, not an intrinsic" 📉


A frequently asked question

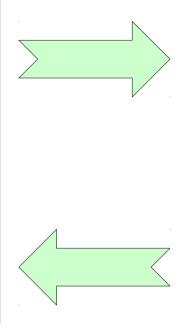
"missing" vector __builtin functions

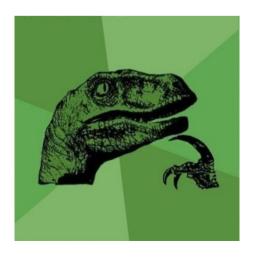

The Intel and AMD manuals document a number "<*mmintrin.h>" header files, which define a standardized API for accessing vector operations on X86 CPUs. These functions have names like _mm_xor_ps and _mm256_addsub_pd. Compilers have leeway to implement these functions however they want. Since Clang supports an excellent set of <u>native vector</u> <u>operations</u>, the Clang headers implement these interfaces in terms of the native vector operations.

From http://clang.llvm.org/compatibility.html#vector_builtins

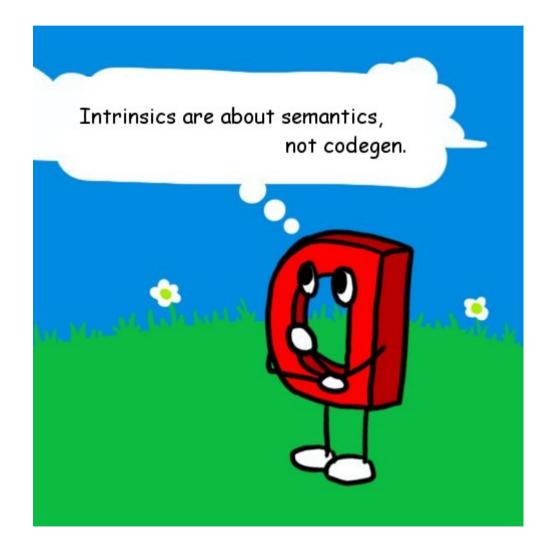

clang 's _mm_add_ss

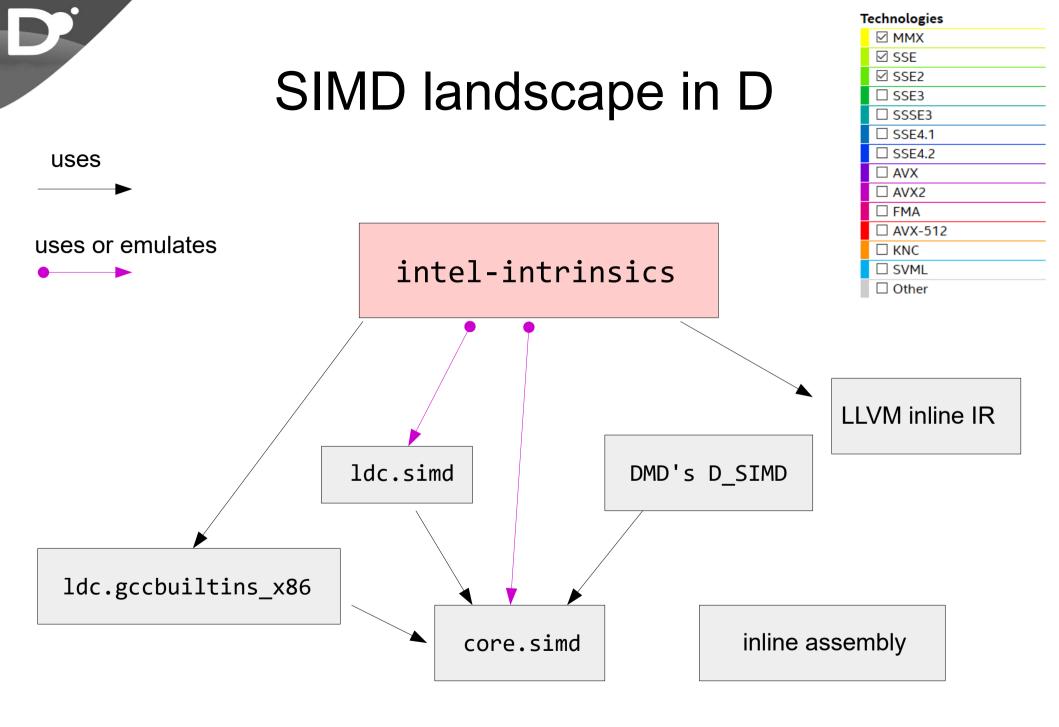
Does it generate the right instruction?


Realization #1



To optimize normal D code, you decide to use « intrinsics » instead of regular code to force a particular instruction

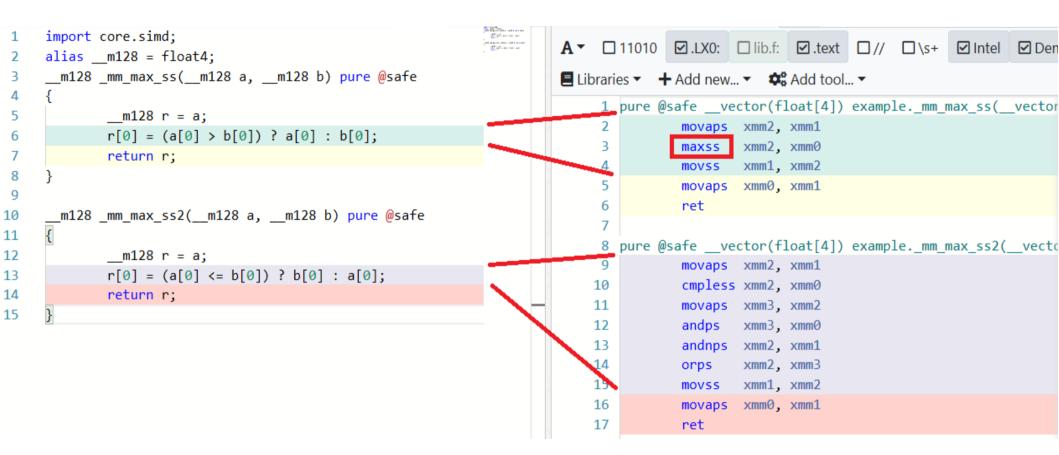

The best way to implement « intrinsics » may well be normal D code



Paradox of « intrinsics »

Realization #3

D


3 surprising things learned

Generating PAVGW

```
__m128i _mm_avg_epu16 (__m128i a, __m128i b) pure @safe
// Generates pavgw even in LDC 1.0, even in -00
enum ir = `
%ia = zext <8 x i16> %0 to <8 x i32>
%ib = zext <8 x i16> %1 to <8 x i32>
%isum = add <8 x i32> %ia, %ib
%isum1 = add <8 x i32> %isum, < i32 1, i32
```

Some instructions need a magic sequence of IR.

NaNs complicate everything

14 ways to compare floating-point numbers, not just 4.

The deadliest cast

D.

C++ source #1 ×			x86-64 icc 19.0.1 (Editor #1, Compiler #1) C++ ×			
A ▼ 🖬 Save/Load 🕂 Add new ▼ 🔎 CppInsights	C++ 🔻	x8	6-64 icc 19.0.1	▼ ⊘ -02	-m32	
<pre>1 #include <emmintrin.h> 2</emmintrin.h></pre>	Note and a process of the second second a second second a process second a second second a second second a second second	A۰				
3 long long convertFloatToLongLong(m128 a)		11010	☑.LX0: □ lib.f:	☑.text ☑//	□ \s+ 🗹 Intel	Demangle
4 { 5 return (long long)a[θ];		E Librarie		✓ ✿\$ Add tool ▼		
6 }		1	convertFloatToL	ongLong(m128)	:	
7		2	sub	esp, 44		- Sector
<pre>8 int convertFloatToInt(m128 a)</pre>		3	movss	DWORD PTR [2		
9 {		4	fld	DWORD PTR [2	4+esp]	
10 return (int)a[0];		5	fnstcw	[esp]		
11 }		6	movzx	eax, WORD PT	R [esp]	
12		7	or	eax, 3072		
		8	mov	DWORD PTR [8	+esp], eax	
		9	fldcw	[8+esp]		
		10	fistp	QWORD PTR [1	6+esp]	
		11	fldcw	[esp]	TD [46]	
No SSE way to convert from float/double to a 64-bit integer		12	mov	eax, DWORD P		
		13	mov	edx, DWORD P	ik [20+esp]	
		14 15	add ret	esp, 44		
			convertFloatToI	nt(m128).		
(in 32-bit x86)		10		si eax, xmm0		
		17	ret	51 Cax, Annio		

- Every 516 intrinsics for SSE/SSE2/MMX
- Equivalent of <emmintrin.h>, <xmmintrin.h> and <mmintrin.h> but for D
- 192 unittest, tested on beta DMD/LDC with and without optimizations
- Some #BONUS intrinsics (SIMD log/exp/pow)
- Adds float2 / int2

- Same semantics for DMD and LDC (slowly emulated on DMD, mostly optimal on LDC)
- core.simd emulated on DMD because of Win32
- Focused on x86/x86_64 for now

intel-intrinsics tomorrow

- Improve performance when using DMD (leverage core.simd at the very least)
- Support GDC, be less LDC-exclusive
- ARM
- •pragma(inline, true)

Disclaimer : This slide talks about future software changes

intel-intrinsics

PROS

- Brings core.simd when not available
- Somewhat portable, the goal is codegen decorrelated from SIMD semantics (WIP)
- Exact same results whatever the compiler
- I'm forced to maintain it

CONS

- Possibly slower debug performance
- Slower DMD performance
- Restricted to SSE/SSE2/MMX semantics

Insert that one XKCD comic about standards here

D'

Which one is faster?

dub -b release-nobounds --combined --compiler ldc2

```
void squareMagnitudesNaive(const(cfloat)* complexData, float* squaredMagnitudes, int numBins)
    nothrow @nogc pure
    for (int bin = 0; bin < numBins; ++bin)</pre>
    {
        cfloat c = complexData[bin];
        squaredMagnitudes[bin] = c.re * c.re + c.im * c.im + 1e-10f;
void squareMagnitudesInteli(const(cfloat)* complexData, float* squaredMagnitudes, int numBins)
    nothrow @nogc pure
Ł
     m128 offset = mm set1 ps(1e-10f);
    for(int bin = 0; bin < numBins; bin += 2)</pre>
        // read two bins at once and square them
        __m128 bins = _mm_load_ps(cast(float*)(&complexData[bin]));
        bins *= bins;
        bins += mm srli ps!4(bins);
         m128 squaredMag = mm shuffle ps!0x88(bins, bins);
        squaredMag = _mm_add_ps(squaredMag, offset);
        _mm_storel_epi64(cast(__m128i*)(&squaredMagnitudes[bin]), cast(__m128i) squaredMag);
```

Optimized code doesn't have to be ugly

dub -b release-nobounds --combined --compiler ldc2

```
void squareMagnitudesNaive(const(cfloat)* complexData, float* squaredMagnitudes, int numBins)
    nothrow @nogc pure
   for (int bin = 0; bin < numBins; ++bin)</pre>
                                                Unrolled by 4
        cfLoat c = complexData[bin];
        squaredMagnitudes[bin] = c.re * c.re + c.im * c.im + 1e-10f;
void squareMagnitudesInteli(const(cfloat)* complexData, float* squaredMagnitudes, int numBins)
    nothrow @nogc pure
     m128 offset = mm set1 ps(1e-10f);
                                                Unrolled by 2
    for(int bin = 0; bin < numBins; bin += 2)</pre>
        // read two bins at once and square them
         m128 bins = mm load ps(cast(fLoat*)(&complexData[bin]));
        bins *= bins;
        bins += mm srli ps!4(bins);
         _m128 squaredMag = _mm_shuffle_ps!0x88(bins, bins);
        squaredMag = _mm_add_ps(squaredMag, offset);
        _mm_storel_epi64(cast(__m128i*)(&squaredMagnitudes[bin]), cast(__m128i) squaredMag);
```

Which one is faster ?

dub -b release-nobounds -combined
--compiler ldc2

```
import inteli.emmintrin;
import core.math;
import ldc.intrinsics: llvm_sqrt;
```

```
float distanceNaive(const(float)* a, const(float)* b) nothrow @nogc
{
    return llvm_sqrt( (a[0] - b[0])*(a[0] - b[0])
                   + (a[1] - b[1])*(a[1] - b[1])
                   + (a[2] - b[2])*(a[2] - b[2])
                   + (a[3] - b[3])*(a[3] - b[3]) );
}
float distanceInteli(const(float)* a, const(float)* b) nothrow @nogc
ſ
   m128 vb = _mm_loadu_ps(b);
     _m128 diffSquared = va - vb;
   diffSquared *= diffSquared;
   __m128 sum = _mm_add_ps(diffSquared, _mm_srli_ps!8(diffSquared));
    sum += _mm_srli_ps!4(sum);
    return _mm_cvtss_f32(_mm_sqrt_ss(sum));
}
```

```
Backends are awesome
import inteli.emmintrin;
import core.math;
import ldc.intrinsics: llvm_sqrt;
float distanceNaive(const(float)* a, const(float)* b) nothrow @nogc
ł
   return llvm_sqrt( (a[0] - b[0])*(a[0] - b[0])
                   + (a[1] - b[1])*(a[1] - b[1])
                   + (a[2] - b[2])*(a[2] - b[2]) 🔫
                   + (a[3] - b[3])*(a[3] - b[3]) );
}
fLoat distanceInteli(const(fLoat)* a, const(fLoat)* b) nothrow@ogc
{
   __m128 vb = _mm_loadu_ps(b);
     _m128 diffSquared = va - vb;
   diffSquared *= diffSquared;
   __m128 sum = _mm_add_ps(diffSquared, _mm_srli_ps!8(diffSquared));
   sum += _mm_srli_ps!4(sum);
   return _mm_cvtss_f32(_mm_sqrt_ss(sum));
}
```

Generated code is very similar

One example that works

peak p() pm1

pm2 < pm1
pm1 < p0
p0 > p1
p1 > p2

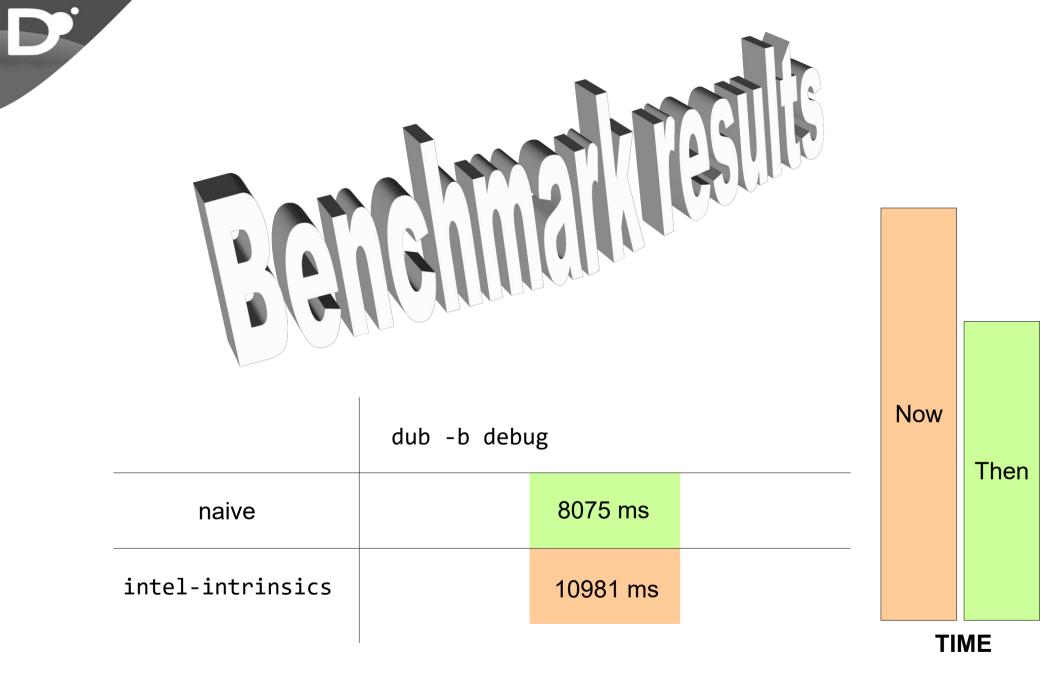
```
int countSpectralPeaksFirst(float* squaredMagnitude, int binMax)
   nothrow @nogc
ſ
   int numPeaks = 0;
    foreach(int bin; 2..binMax-2)
       float pm2 = squaredMagnitude[bin-2];
       float pm1 = squaredMagnitude[bin-1];
       float p0 = squaredMagnitude[bin];
       float p1 = squaredMagnitude[bin+1];
       float p2 = squaredMagnitude[bin+2];
           (pm2 < pm1 && pm1 < p0 && p0 > p1 && p1 > p2)
        {
           numPeaks += 1; // peak detected
   return numPeaks;
```

Detect spectral peaks in a phase vocoder

Using _mm_cmplt_ps and _mm_movemask_ps

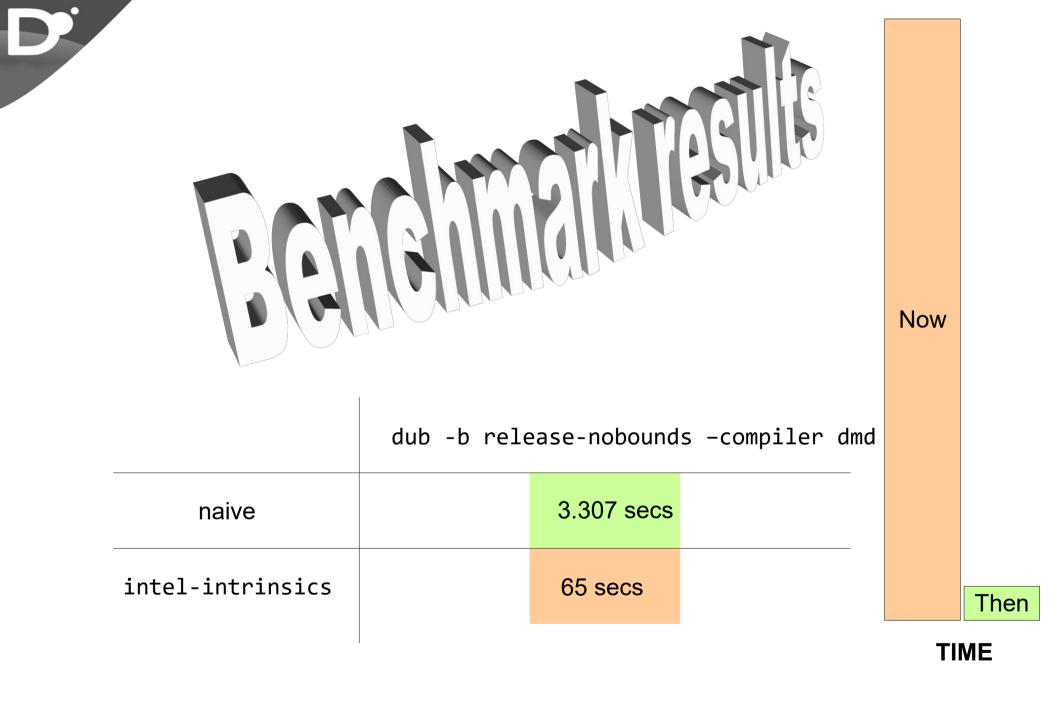
```
peak
                               p0
                                                   pm2 < pm1
                         pm1
                                                        < p0
                                                   p0 >= p1
                                                    p1 >= p2
int countSpectralPeaksInteli(float* squaredMagnitude, int binMax)
    nothrow @nogc
   import inteli.emmintrin;
   int numPeaks = 0;
    foreach(int bin; 2..binMax-2)
         m128 energy0 = mm loadu ps(&squaredMagnitude[bin - 2]);
         _m128 energy1 = _mm_loadu_ps(&squaredMagnitude[bin - 1]);
       // pm1<pm2 p0<pm1 p1<p0 p2<p1
         m128 goingDown = mm cmplt ps(energy1, energy0);
       int mask4bit = mm movemask ps(goingDown);
       if (mask4bit == (0 + 0 + 4 + 8))
           numPeaks += 1; // peak detected
```

```
return numPeaks;
```



	dub -b release-noboundscombined
naive	1822 ms
intel-intrinsics	520 ms

1


(ldc 1.8.0, Win64, 100000 samples)

Expect worse debug performance (inlining)

(ldc 1.8.0, Win64, 100000 samples)

Expect worse DMD performance for now.

(dmd v2.084, Win32, 100000 samples)

Take home message

A. Profile your code, measure in the following order:

Regular D code, array ops...

Then intel-intrinsics

"dependencies": "intel-intrinsics": "~>1.0" }

- **B.** If debug performance OR DMD performance is important:
- Maybe use both assembly and intel-intrinsics
- **C.** Contributions welcome

D

2 ways to announce speed-ups to your boss

Hidden content

Strategy #1: Talking about Time

500 / 600 = 0.833...

«Challenger takes 16.6 % less time than Baseline »

1 - 500 / 600 = 0.166...

Hidden content

Strategy #2: Talking about Speed

600 / 500 = 1.2

« Challenger is 20 % faster than Baseline »

600 / 500 - 1 = 0.2

Hidden content

2 ways to announce speed-ups to your boss

« Here is a 16.6 % improvement »

VS

« Here is a 20 % improvement » ?

D