

intel-intrinsics
Not intrinsically about intrinsics

By Guillaume Piolat

intel-intrinsics
Please use my library

By Guillaume Piolat

This is a talk about performance

Part 1
 Speed is still important

Part 2
 The D SIMD landscape

Part 3
 How intel-intrinsics was made

Part 4
 Choosen examples

Part 5
 I'll tell you to profile your code first

Hello

 Auburn Sounds is a bootstrapped
B2C music app business

 Clients = mostly urban music
producers

 Complexity = about 80 kloc of D

 Open Source core = Dplug

 Competition is 99% C++

Selling audio plug-ins

 Audio plug-ins = small dynlibs that
process audio quicker than real-time

 Fierce competition

 CPU time is shared (~1%)

 Typical commercial plug-in is
between 10x to 300x real-time

100x real-time

Performance an enabler

 Rarely mentionned by B2C consumers as long as
software is fast enough

 Many Quality vs CPU trade-offs
 Speed enables better-sounding algorithms

 Audio not special

Performance an enabler

 Rarely mentionned by B2C consumers as long as
software is fast enough

 Many Quality vs CPU trade-offs
 Speed enables better-sounding algorithms

 Audio not special

 YOUR CUSTOMERS
 PROBABLY
 LOVE PERFORMANCE
 EVEN IF THEY DON'T TELL YOU

 Measure, have a baseline, improve precision
 (cf. Alexandrescu talks)

 Make identified bottlenecks faster

How to get faster programs?

How to get faster programs?

 Measure, have a baseline, improve precision
 (cf. Alexandrescu talks)

 Make identified bottlenecks faster

Single Instruction, Multiple Data helps.

But which D SIMD facility to use?

The D SIMD Landscape

(this image generated with goart.fotor.com)

Option #1: inline assembly

Sample from Dplug, linear texture sampling

Option #1: using assembly

PROS

 Portable across DMD and
LDC

 Predictable

 Debug performance

CONS

 Write twice, for x86 and
x86_64 (except rare cases)

 Hard to write, debug, and read

 Very arch-specific

Option #1: using assembly

PROS

 Portable across DMD and
LDC

 Predictable

 Debug performance

CONS

 Write twice, for x86 and
x86_64 (except rare cases)

 Hard to write, debug, and read

 Very arch-specific

 Rarely the best performance

 Does not get faster over time

Option #2: core.simd

Introduced in 2012.

Option #2: core.simd

PROS

 Portable across DMD, LDC
and GDC

 Easy to read/write/debug

 Pleasant syntax

CONS

 No support in DMD + Win32

 x86 CPU have more
operations than that

 eg :
 PMADDW
 PSHUFB...

Working with the back-end

Working with the back-end

Assembly blocks
may have devastating
overhead

Option #2: core.simd

PROS

 Portable across DMD, LDC
and GDC

 Easy to read/write/debug

 Pleasant syntax

CONS

 No support in DMD + Win32

 x86 CPU have more
operations than that

 eg :
 PMADDW
 PSHUFB...

core.simd is great

Option #3: core.simd + D_SIMD

A DMD extension also introduced in 2012.

PROS

 Good x86 instruction set
support

CONS

 D_SIMD only in DMD

 again, not in Win32

Option #3: core.simd + D_SIMD

Option #4: ldc.simd

Extends core.simd with portable operations:
 shufflevector
 Unaligned load/store
 and more...

Some of it made it back to core.simd

PROS

 All the pros from core.simd

 Portable

CONS

 LDC-specific

 Many x86 operations not
doable:

 eg: ADDSS,
 PMADDW,
 PAVGB...

Option #4: ldc.simd

PROS

 All the pros from core.simd

 Portable

CONS

 LDC-specific

 Many x86 operations not
doable:

 eg: ADDSS,
 PMADDW,
 PAVGB...

Option #4: ldc.simd

Tension
right here

Option #5: ldc.gccbuiltins_x86

Extends core.simd with some x86 builtins

PROS

 Provide direct instruction
generation.

CONS

 LDC only

Option #5: ldc.gccbuiltins_x86

PROS

 Provide direct instruction
generation.

CONS

 LDC only

Option #5: ldc.gccbuiltins_x86

 intel-intrinsics
started as a familiar syntax for
 ldc.gccbuiltins_x86

How intel-intrinsics was made

Implementing _mm_add_ps

ADDPS instruction

With core.simd:

Implementing _mm_add_ss

ADDSS instruction

With ldc.gccbuiltins_x86

LDC 1.1 removed
__builtin_ia32_addss!

ADDSS instruction

With ldc.gccbuiltins_x86

PROS

 Provide direct instruction
generation.

CONS

 LDC only

 The built-ins are disappearing
over time

Option #5: ldc.gccbuiltins_x86

LDC 1.1 removed
__builtin_ia32_addss!

LDC issues #2019, #2250 and #2759

What « intrinsics »?

What « intrinsics »?

The builtins disappeared upstream, in clang.

Life on the other edge

"This is a builtin, not an intrinsic"

A frequently asked question

From http://clang.llvm.org/compatibility.html#vector_builtins

clang 's _mm_add_ss

Vector
extensions

Does it generate the right instruction?

 Realization #1

 Realization #2

 Paradox of « intrinsics »

To optimize normal
D code, you decide
to use « intrinsics »
instead of regular
code to force a

particular instruction

The best way to
implement

« intrinsics »
may well be

normal D code

 Realization #3

SIMD landscape in D

core.simd inline assembly

DMD's D_SIMDldc.simd

ldc.gccbuiltins_x86

intel-intrinsics

LLVM inline IR

uses

uses or emulates

3 surprising things learned

Generating PAVGW

Some instructions need a magic sequence of IR.

NaNs complicate everything

14 ways to compare floating-point numbers, not just 4.

The deadliest cast

No SSE way to convert from
float/double to a 64-bit integer
(in 32-bit x86)

intel-intrinsics today

 Every 516 intrinsics for SSE/SSE2/MMX

 Equivalent of <emmintrin.h>, <xmmintrin.h> and
<mmintrin.h> but for D

192 unittest, tested on beta DMD/LDC with and without
optimizations

 Some #BONUS intrinsics (SIMD log/exp/pow)

 Adds float2 / int2

intel-intrinsics today

 Same semantics for DMD and LDC (slowly emulated on
DMD, mostly optimal on LDC)

 core.simd emulated on DMD because of Win32

 Focused on x86/x86_64 for now

intel-intrinsics tomorrow

 Improve performance when using DMD (leverage
core.simd at the very least)

 Support GDC, be less LDC-exclusive

 ARM

 pragma(inline, true)

Disclaimer : This slide talks about future software changes

PROS

 Brings core.simd when not
available

 Somewhat portable, the goal
is codegen decorrelated from
SIMD semantics (WIP)

 Exact same results whatever
the compiler

 I'm forced to maintain it

CONS

 Possibly slower debug
performance

 Slower DMD performance

 Restricted to SSE/SSE2/MMX
semantics

intel-intrinsics

Insert that one XKCD comic
about standards here

EXAMPLES

Which one is faster ?

dub -b release-nobounds –-combined –-compiler ldc2

Optimized code doesn't have to be ugly

2x s
lower

dub -b release-nobounds –-combined –-compiler ldc2

Unrolled by 4

Unrolled by 2

Which one is faster ? dub -b release-nobounds –combined
--compiler ldc2

Backends are awesome

equal
 perf

Generated code is very similar

One example
that works

Detect spectral peaks in a phase vocoder

pm2 < pm1
pm1 < p0
p0 > p1
p1 > p2

p0
p1

p2pm2

pm1

Using _mm_cmplt_ps
and _mm_movemask_ps

pm2 < pm1
pm1 < p0
p0 >= p1
p1 >= p2

p0
p1

p2pm2

pm1

intel-intrinsics

naive

dub -b release-nobounds --combined

1822 ms

520 ms

1822 ms

(ldc 1.8.0, Win64, 100000 samples)

intel-intrinsics

naive

dub -b release-nobounds --combined

1822 ms

520 ms

1822 ms3.5x faster

Now

Then

TIME

intel-intrinsics

naive

dub -b debug

10981 ms

8075 ms

(ldc 1.8.0, Win64, 100000 samples)

Now

Then

TIME

Expect worse debug performance (inlining)

intel-intrinsics

naive

dub -b release-nobounds –compiler dmd

65 secs

3.307 secs

(dmd v2.084, Win32, 100000 samples)Expect worse DMD performance for now.

Now

Then

TIME

A. Profile your code, measure in the following order:

 Regular D code, array ops...

 Then intel-intrinsics

B. If debug performance
 OR
 DMD performance is important:

 Maybe use both assembly and intel-intrinsics

C. Contributions welcome

Take home message

 Thank you!

Hidden content
2 ways to announce speed-ups to your boss

Strategy #1: Talking about Time

Hidden content

Baseline
600 ms

Challenger
500 ms

 500 / 600 = 0.833…

1 - 500 / 600 = 0.166...

«Challenger takes 16.6 % less time than Baseline »

Hidden content

Baseline
600 ms

Challenger
500 ms

 600 / 500 = 1.2

600 / 500 - 1 = 0.2

« Challenger is 20 % faster than Baseline »

Strategy #2: Talking about Speed

2 ways to announce speed-ups to your boss

Hidden content

« Here is a 16.6 % improvement »

 vs

« Here is a 20 % improvement » ?

 Thank you!

