
All Spreadsheets must Die

Robert Schadek
May 8, 2019

Getting started

A random list of languages we love to hate

1

Hating by numbers [1, 2]

C++ 4.4Million (2015)
C 1.9Million (2015)

Java 9Million (2009)
JS 10Million (2018)

2

These are all small fish

Excel

≈ 750 Million (2016)

3

[3, 4]

These are all small fish

Excel

≈ 750 Million (2016)
3

4

5

Oh, but it is [5]

6

A little bit of Spreadsheet bashing

Seeing the code is difficult

7

Dynamic Types

8

Dynamic Types

9

Dynamic Types

10

11

git blame

git blame

lets not go there

we will just become sad

12

git blame

git blame

lets not go there

we will just become sad 12

Code refactoring

• =SUM(1,2)

• equal, identifier, lparen, int(1), comma, int(2), rparen

• set Excel locale to de_DE
• =SUM(1,2)

• equal, identifier, lparen, float(1.2), rparen

13

Code refactoring

• =SUM(1,2)

• equal, identifier, lparen, int(1), comma, int(2), rparen

• set Excel locale to de_DE
• =SUM(1,2)

• equal, identifier, lparen, float(1.2), rparen

13

Code refactoring

• =SUM(1,2)

• equal, identifier, lparen, int(1), comma, int(2), rparen

• set Excel locale to de_DE

• =SUM(1,2)

• equal, identifier, lparen, float(1.2), rparen

13

Code refactoring

• =SUM(1,2)

• equal, identifier, lparen, int(1), comma, int(2), rparen

• set Excel locale to de_DE
• =SUM(1,2)

• equal, identifier, lparen, float(1.2), rparen

13

Code refactoring

• =SUM(1,2)

• equal, identifier, lparen, int(1), comma, int(2), rparen

• set Excel locale to de_DE
• =SUM(1,2)

• equal, identifier, lparen, float(1.2), rparen

13

Bits and Pieces

• Knowledge silos
• Slow
• No separation between data and code
• Access management . . .

anybody?

14

Bits and Pieces

• Knowledge silos
• Slow
• No separation between data and code
• Access management . . . anybody?

14

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

(Typical) Spreadsheet Lifecycle

1. Create private shopping spreadsheet
2. Show spreadsheet to college
3. Use spreadsheet for all company purchases
4. Put web frontend on spreadsheet backend
5. Pivot company to become E-Commerce company

15

Spreadsheets rule the world!

16

How you should be feeling right now

17

Two assumptions going forward

1. You believe that spreadsheets rule the world.
2. You want D to rule the world instead.

18

How are we going to win this?

We are not!

19

How are we going to win this?

We are not!

19

Lets draw up a battle plan

Lets take stock of what we have

• Too many spreadsheets
• Too many tasks
• Too little man-power

• Millions of lines of source in different languages
• D

20

Lets take stock of what we have

• Too many spreadsheets
• Too many tasks
• Too little man-power

• Millions of lines of source in different languages
• D

20

Possible Attack Vectors

21

How to work with limited
man-power

Leveraging existing libraries

Writing data to spreadsheets

• It is required, people will ask for that
• Writing a somewhat feature complete xlsx writer is a huge task

• libxlsxwriter is a feature rich xlsx writer
• Wrapping it by hand, no way (+78000 lines of structs, enums and functions)

• dpp to the rescue
• libxlsxwriter.d (+4000 lines)
• But it is still a C api

22

Leveraging existing libraries

Writing data to spreadsheets

• It is required, people will ask for that
• Writing a somewhat feature complete xlsx writer is a huge task

• libxlsxwriter is a feature rich xlsx writer
• Wrapping it by hand, no way (+78000 lines of structs, enums and functions)

• dpp to the rescue
• libxlsxwriter.d (+4000 lines)
• But it is still a C api

22

Leveraging existing libraries

Writing data to spreadsheets

• It is required, people will ask for that
• Writing a somewhat feature complete xlsx writer is a huge task

• libxlsxwriter is a feature rich xlsx writer
• Wrapping it by hand,

no way (+78000 lines of structs, enums and functions)

• dpp to the rescue
• libxlsxwriter.d (+4000 lines)
• But it is still a C api

22

Leveraging existing libraries

Writing data to spreadsheets

• It is required, people will ask for that
• Writing a somewhat feature complete xlsx writer is a huge task

• libxlsxwriter is a feature rich xlsx writer
• Wrapping it by hand, no way (+78000 lines of structs, enums and functions)

• dpp to the rescue
• libxlsxwriter.d (+4000 lines)
• But it is still a C api

22

Leveraging existing libraries

Writing data to spreadsheets

• It is required, people will ask for that
• Writing a somewhat feature complete xlsx writer is a huge task

• libxlsxwriter is a feature rich xlsx writer
• Wrapping it by hand, no way (+78000 lines of structs, enums and functions)

• dpp to the rescue
• libxlsxwriter.d (+4000 lines)
• But it is still a C api

22

dpp output

1 void chart_axis_set_name (lxw_chart_axis *, const(char)*)
2 void chart_axis_set_name_font (lxw_chart_axis *, lxw_chart_font *)
3 void chart_axis_set_num_font (lxw_chart_axis *, lxw_chart_font *)
4 void chart_axis_set_num_format (lxw_chart_axis *, const(char)*)
5 void chart_axis_set_line (lxw_chart_axis *, lxw_chart_line *)
6 void chart_axis_set_fill (lxw_chart_axis *, lxw_chart_fill *)
7 ...

23

Semi-automatic refactoring

1 struct ChartAxis {
2 lxw_chart_axis * handle ;
3

4 void setName (string name) {
5 chart_axis_set_name (this.handle , toStringz (name));
6 }
7

8 void setNameRange (string n, lxw_row_t row ,
9 lxw_col_t col)

10 {
11 chart_axis_set_name (this.handle , toStringz (n), row , col);
12 }
13 ...
14 }

24

Creating fake data

Problem to solve: We needed fake data with a variety of attributes.

• Name
• Address
• i18n
• ...

25

Creating fake data

Problem to solve: We needed fake data with a variety of attributes.

• Name
• Address
• i18n
• ...

25

faker.js [6]

• +160 attributes
• 39 languages

26

faker.js

1 module [" exports "] = [
2 "#{ prefix } #{ first_name } #{ last_name }",
3 "#{ first_name } #{ nobility_title_prefix } #{ last_name }",
4 "#{ first_name } #{ last_name }",
5 "#{ first_name } #{ last_name }",
6 "#{ first_name } #{ last_name }",
7 "#{ first_name } #{ last_name }"
8];

Listing 1: locales/de/name/name.js

27

FakeD [7]

1 override string nameName () {
2 switch (uniform (0, 6, this.rnd)) {
3 case 0:
4 return format !"%s %s %s"(namePrefix () , nameFirstName () ,
5 nameLastName ());
6 case 1:
7 return format !"%s %s %s"(nameFirstName () , nameNobilityTitlePrefix () ,
8 nameLastName ());
9 case 2:

10 return format !"%s %s"(nameFirstName () , nameLastName ());
11 case 3:
12 return format !"%s %s"(nameFirstName () , nameLastName ());
13 case 4:
14 return format !"%s %s"(nameFirstName () , nameLastName ());
15 case 5:
16 return format !"%s %s"(nameFirstName () , nameLastName ());
17 default : assert (false);
18 }
19 }

28

FakeD

1 import faked;
2

3 auto f = new Faker (1337) ;
4 writeln (f. nameName ());
5

6 // localized to german
7 f = new Faker_de (1338) ;
8 writeln (f. nameName ());

29

FakeD

• Input:
• Parser and Generator ≈ 1500 lines of D
• A day of boring work

• Output:
• Output feature equivalent ≈ 70000 lines faker.js clone
• Most changes in faker.js just require a rerun of the tool to update

• Bonus:
• Created two PRs to faker.js fixing wrong template expansion

30

FakeD

• Input:
• Parser and Generator ≈ 1500 lines of D
• A day of boring work

• Output:
• Output feature equivalent ≈ 70000 lines faker.js clone
• Most changes in faker.js just require a rerun of the tool to update

• Bonus:
• Created two PRs to faker.js fixing wrong template expansion

30

FakeD

• Input:
• Parser and Generator ≈ 1500 lines of D
• A day of boring work

• Output:
• Output feature equivalent ≈ 70000 lines faker.js clone
• Most changes in faker.js just require a rerun of the tool to update

• Bonus:
• Created two PRs to faker.js fixing wrong template expansion

30

Taking a step back

The Wanted Output: Salary Table

Firstname Lastname Amount Currency CreatedBy
Hans Meier 73331 USD Ruth Ember
John Doe 83431 GPB Ruth Ember
Ruth Ember 103431 EUR Hans Meier

31

The starting point

1 class Employee {
2 long id;
3 DateTime createdAt ;
4

5 EmployeeInfo info;
6 long infoId ;
7 }
8

9 class EmployeeInfo {
10 long id;
11 string firstname ;
12 string lastname ;
13

14 Salary salary ;
15 long salaryId ;
16 }

17 class Salary {
18 long id;
19 Employee createdBy ;
20 long createdById ;
21

22 CurrencyAmount amount ;
23 long amountId ;
24 }
25

26 class CurrencyAmount {
27 long id;
28 double amount ;
29

30 Currency currency ;
31 long currencyId ;
32 }

32 class Currency {
33 long id;
34 string name;
35 }

32

The vibe.d REST interface

1 interface Backend {
2 Employee [] getAllEmployees ();
3 Employee getEmployee (long empId);
4 EmployeeInfo getEmployeeInfo (long empInfoId);
5 Salary getSalary (long salaryId);
6 CurrencyAmount getCurrencyAmount (long amountId);
7 Currency getCurrency (long currencyId);
8 }

33

The Frontend Code: Types

1 interface Employee {
2 id: number ;
3 createdAt : number ;
4

5 info ?: EmployeeInfo ;
6 infoId : number ;
7 }
8

9 interface EmployeeInfo {
10 id: number ;
11 firstname : string ;
12 lastname : string ;
13

14 salary ?: Salary ;
15 salaryId : number ;
16 }

17 interface Salary {
18 id: number ;
19 createdBy ?: Employee ;
20 createdById : number ;
21

22 amount ?: CurrencyAmount ;
23 amountId : number ;
24 }
25

26 interface CurrencyAmount {
27 id: number ;
28 amount : number ;
29

30 currency ?: Currency ;
31 currencyId : number ;
32 }

34

The Frontend Code: Backend Service

1 import {
2 Employee , EmployeeInfo , Salary , CurrencyAmount , Currency
3 } from "model";
4

5 class Backend {
6 getAllEmployees () : Employee [] { ... }
7 getEmployee (empId: number): Employee { ... }
8 getEmployeeInfo (empInfoId : number): EmployeeInfo { ... }
9 getSalary (salaryId : number): Salary { ... }

10 getCurrencyAmount (amountId : number): CurrencyAmount { ... }
11 getCurrency (currencyId : number): Currency { ... }
12 }

35

The Frontend Code: Calling the Backend

1 this. backend . getAllEmployees ().pipe(
2 mergeMap ((emps: Employee []) => {
3 const obs = [];
4 for(const emp of emps) {
5 obs.push(this. backend . getEmployeeInfo (emp. infoId)
6 .pipe(map ((empInfo : EmployeeInfo) => {
7 const ne: Employee = {... emp , info : empInfo };
8 return ne;
9 })

10)
11);
12 }
13 return forkJoin (obs);
14 }),
15 mergeMap ((emps: Employee []) => {
16 const obs = [];
17 for(const emp of emps) {
18 obs.push(this. backend . getSalary (emp.info. salaryId)
19 .pipe(map ((sal: Salary) => {
20 const ne: Employee = {... emp };
21 ne.info. salary = sal;
22 return ne;
23 })
24)
25);
26 }
27 return forkJoin (obs);
28 }),

36

The Communication

37

The Takeaways

• Clearly, this is unworkable
• Not plastic at all
• Just a lot of boring work

38

The real Takeway

39

So, what do we/I want?

Declare how we want data to get, when we’re asking for it.

40

Why can’t we write this?
1 {
2 allEmployees {
3 info {
4 firstname
5 lastname
6 salary {
7 amount
8 currency {
9 name

10 }
11 createdBy {
12 info {
13 firstname
14 lastname
15 }
16 }
17 }
18 }
19 }
20 }

1 {
2 allEmployees : [{
3 info: {
4 firstname : "Hans",
5 lastname : " Meier ",
6 salary : {
7 amount : 73331,
8 currency : {
9 name: "USD"

10 }
11 createdBy : {
12 info: {
13 firstname : "Ruth",
14 lastname : " Ember "
15 }
16 }
17 }
18 },
19 },
20 ...
21]
22 }

41

Why can’t we write this?
1 {
2 allEmployees {
3 info {
4 firstname
5 lastname
6 salary {
7 amount
8 currency {
9 name

10 }
11 createdBy {
12 info {
13 firstname
14 lastname
15 }
16 }
17 }
18 }
19 }
20 }

1 {
2 allEmployees : [{
3 info: {
4 firstname : "Hans",
5 lastname : " Meier ",
6 salary : {
7 amount : 73331,
8 currency : {
9 name: "USD"

10 }
11 createdBy : {
12 info: {
13 firstname : "Ruth",
14 lastname : " Ember "
15 }
16 }
17 }
18 },
19 },
20 ...
21]
22 }

41

GraphQL [8]

42

GraphQL

1 schema {
2 query : Backend
3 }
4

5 type Backend {
6 getAllEmployees : [Employee]
7 }
8

9 type Employee {
10 id: number !;
11 createdAt : number !;
12

13 info: EmployeeInfo ;
14 infoId : number !;
15 }

15 type EmployeeInfo {
16 id: number !;
17 firstname : String !;
18 lastname : String !;
19 salaryId : number !;
20 salary : Salary ;
21 }
22

23 type Salary {
24 id: number !;
25 createdBy : Employee ;
26 amountId : number !;
27 amount : CurrencyAmount ;
28 }

27 type CurrencyAmount {
28 id: number !;
29 amount : number !;
30 currencyId : number !;
31 currency : Currency ;
32 }
33 type Currency {
34 id: number !;
35 name: string !;
36 }

43

Less code is better

1 query one {
2 allEmployees {
3 ... deep
4 }
5 }
6

7 fragment names on EmployeeInfo {
8 firstname
9 lastname

10 }
11

12 fragment empInfo on Employee {
13 info {
14 ... names
15 }
16 }

1 fragment deep on Employee {
2 info {
3 ... names
4 salary {
5 amount
6 currency {
7 name
8 }
9 createdBy {

10 ... empInfo
11 }
12 }
13 }
14 }

44

Introspecting Types
1 {
2 __type (name: " Employee ") {
3 name
4 fields {
5 name
6 type {
7 name
8 kind
9 ofType {

10 name
11 }
12 }
13 }
14 }
15 }

1 {
2 "data": {
3 " __type ": {
4 "name": " Employee ",
5 " fields ": [
6 {
7 "name": "id",
8 "type": {
9 "name": null,

10 "kind": " NON_NULL ",
11 " ofType " {
12 "name": "INT"
13 }
14 }
15 },
16 {
17 "name": "info",
18 "type": {
19 "name": " EmployeeInfo ",
20 "kind": " OBJECT "
21 }
22 }
23]
24 }
25 }
26 }

45

D’s GraphQL Story

46

JUST DO IT

47

GraphQLD [9]

1 import graphqld ;
2

3 interface Query {
4 Employee [] getAllEmployees ();
5 }
6

7 class Schema {
8 Query queryType ;
9 }

1 auto graphqld = new GraphQLD !(Schema)();
2

3 graphqld . setResolver (
4 " queryType ", " getAllEmployees ",
5 delegate (string name , Json parent ,
6 Json args , ref Context context) @safe
7 {
8 Employee [] employees = getAllEmployees ();
9 Json ret = Json. emptyObject ();

10 ret["data"] = toGraphqlJson (employees);
11 return ret;
12 });

48

GraphQLD [9]

1 import graphqld ;
2

3 interface Query {
4 Employee [] getAllEmployees ();
5 }
6

7 class Schema {
8 Query queryType ;
9 }

1 auto graphqld = new GraphQLD !(Schema)();
2

3 graphqld . setResolver (
4 " queryType ", " getAllEmployees ",
5 delegate (string name , Json parent ,
6 Json args , ref Context context) @safe
7 {
8 Employee [] employees = getAllEmployees ();
9 Json ret = Json. emptyObject ();

10 ret["data"] = toGraphqlJson (employees);
11 return ret;
12 });

48

GraphQLD

1 void graphqlEndpoint (HTTPServerRequest req ,
2 HTTPServerResponse res)
3 {
4 string toParse = extractQuery (req);
5 auto p = Parser (Lexer(toParse));
6

7 Document d = p. parseDocument ();
8 auto fv = new QueryValidator (d);
9 auto sv = new SchemaValidator ! Schema (d, graphqld . schema);

10 fv. accept (d);
11 sv. accept (d);
12

13 Context con = buildContext (req);
14 Json ret = graphqld . execute (d, extractVariables (req), con);
15 res. writeJsonBody (ret);
16 }

49

GraphQLD

1 graphqld . setResolver (" Employee ", "info",
2 delegate (string name , Json parent , Json args ,
3 ref Context context)
4 {
5 const id = parent [" infoId "]. get!long ();
6 EmployeeInfo ei = getEmployeeInfo (id);
7 Json ret = Json. emptyObject ();
8 ret["data"] = toGraphqlJson (ei);
9 return ret;

10 });

50

GraphQLD

• Mostly feature complete
• Some validations are missing
• ≈ 17000 lines
• ≈ 9000 lines are generated by darser
• ready for use now

51

Homework

Homework

Write a GraphQL backend that uses an excel
spreadsheet as a database.

52

Conclusion

Conclusion

• Spreadsheets are a terrible programming language.
• C++ and Rust are not our main competition on our path to

world domination.

• We need to learn to use what is there.
• Use D to work smart not hard.
• Do not write the code, write the code that writes the code.
• Look at JS for inspiration.
• GraphQL

53

Conclusion

• Spreadsheets are a terrible programming language.
• C++ and Rust are not our main competition on our path to

world domination.

• We need to learn to use what is there.
• Use D to work smart not hard.
• Do not write the code, write the code that writes the code.
• Look at JS for inspiration.
• GraphQL

53

The End

[1] Infographic: C/C++ facts we learned before going ahead with CLion.
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-
before-clion/. (Accessed on 04/08/2019).

[2] Developer Economics. Developer Economics: State of the Developer Nation 15th
Edition. https://www.developereconomics.com/reports/state-of-the-
developer-nation-15th-edition. (Accessed on 04/08/2019).

[3] Microsoft. Build 2016 Keynote (Day 2).
https://www.youtube.com/watch?v=bf0Rr81is6U. (Accessed on
04/08/2019).

[4] Irish Tech News. Seven reasons why Excel is still used by half a billion people
worldwide. https://irishtechnews.ie/seven-reasons-why-excel-is-
still-used-by-half-a-billion-people-worldwide/. (Accessed on
04/08/2019).

https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://www.developereconomics.com/reports/state-of-the-developer-nation-15th-edition
https://www.developereconomics.com/reports/state-of-the-developer-nation-15th-edition
https://www.youtube.com/watch?v=bf0Rr81is6U
https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/
https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/

[5] Felienne Hermans. GOTO 2016: Pure Functional Programming in Excel by
Felienne Hermans. https://www.youtube.com/watch?v=0yKf8TrLUOw.
(Accessed on 04/08/2019).

[6] Marak/faker.js: generate massive amounts of realistic fake data in Node.js and
the browser. https://github.com/marak/Faker.js/. (Accessed on
05/03/2019).

[7] kaleidicassociates/faked: D library to create real fake data.
https://github.com/kaleidicassociates/faked. (Accessed on
05/03/2019).

[8] GraphQL | A query language for your API. https://graphql.org/. (Accessed
on 05/03/2019).

https://www.youtube.com/watch?v=0yKf8TrLUOw
https://github.com/marak/Faker.js/
https://github.com/kaleidicassociates/faked
https://graphql.org/

[9] burner/graphqld: A vibe.d library to handle the GraphQL Protocol written in the
D Programming Language. https://github.com/burner/graphqld.
(Accessed on 05/03/2019).

[10] burner/Darser: LL1 Parser Generator for D.
https://github.com/burner/Darser. (Accessed on 05/03/2019).

https://github.com/burner/graphqld
https://github.com/burner/Darser

Encore

Reappearing UDA Pattern

1 struct Employee {
2 @GQLD (
3 Description ("The social security number of an employee "),
4 Deprecated (IsDeprecated .yes , "To complex ")
5)
6 SocialSecurityNumber number ;
7 }

9 enum IsDeprecated {
10 undefined ,
11 no ,
12 yes
13 }
14

15 struct GQLDData {
16 Description desc;
17 Deprecated depre ;
18 }

Reappearing UDA Pattern

1 struct Employee {
2 @GQLD (
3 Description ("The social security number of an employee "),
4 Deprecated (IsDeprecated .yes , "To complex ")
5)
6 SocialSecurityNumber number ;
7 }

9 enum IsDeprecated {
10 undefined ,
11 no ,
12 yes
13 }
14

15 struct GQLDData {
16 Description desc;
17 Deprecated depre ;
18 }

Reappearing UDA Pattern

1 struct GQLDData {
2 Description desc;
3 Deprecated depre;
4 }
5

6 GQLDData GQLD(Args ...)(Args args) {
7 GQLDData ret;
8 static foreach (mem; __traits (allMembers , GQLDData)) {
9 static foreach (arg; args) {

10 static if(is(typeof (__traits (getMember , ret , mem)) ==
11 typeof (arg)))
12 {
13 __traits (getMember , ret , mem) = arg;
14 }
15 }
16 }
17 return ret;
18 }

Static Foreach Switch Case

1 Json ret = Json. emptyObject ();
2 string typename = ...;
3 l: switch (typename) {
4 static foreach (type; collectTypes !(T)) {{
5 case typeToTypeName !(type): {
6 ret["data"] = typeToJson !(type)();
7 break l;
8 }
9 }}

10 default : break;
11 }
12 return ret;

Collecting all Referenced Types

1 alias allTypes = collectTypes ! Schema ;
2

3 template collectTypesImpl (Type) {
4 import graphql .uda;
5 static if(is(Type : GQLDCustomLeaf !F, F)) {
6 alias collectTypes Impl= AliasSeq !(Type);
7 } else static if(is(Type == interface)) {
8 alias RetTypes = AliasSeq !(collectReturnType !(Type ,
9 __traits (allMembers , Type)));

10 alias ArgTypes = AliasSeq !(collectParameterTypes !(Type ,
11 __traits (allMembers , Type)));
12 alias collectTypesImpl = AliasSeq !(Type , RetTypes ,
13 ArgTypes , InterfacesTuple !Type);
14
15 } else static if(is(Type == union)) {
16 alias collectTypesImpl = AliasSeq !(Type , InheritedClasses !Type);
17 } else static if(is(Type : Nullable !F, F)) {
18 alias collectTypesImpl = . collectTypesImpl !(F);
19 ...

Type trinary expression

1 template InheritedClass (T) {
2 import std.meta : staticMap , AliasSeq , NoDuplicates ;
3 import std. traits : Select ;
4

5 alias getInheritedFields () = staticMap !(. InheritedClass , FieldTypeTuple !T);
6 alias ftt = Select !(is(T == union), getInheritedFields , AliasSeq);
7

8 alias getBaseTuple () = staticMap !(. InheritedClass , BaseClassesTuple !T);
9 alias clss = Select !(is(T == class), getBaseTuple , AliasSeq);

10

11 alias getInter () = staticMap !(. InheritedClass , InterfacesTuple !T);
12 alias inter = Select !(is(T == class) || is(T == interface),
13 getInter ,
14 AliasSeq
15);
16

17 alias InheritedClass = NoDuplicates !(AliasSeq !(ftt !() , clss !() , inter !()));
18 }

Compile-Time are long as

• ≈ 7000 lines
• ≈ 8 seconds build time

Overall Legacy Architecture

• Traditional compiler pipeline design is dated

• We have practically unlimited memory
• Recreating the AST, IR, and ASM on every compile is

extremely wasteful
• Why does code-completion and the compiler use different

frontends

Overall Legacy Architecture

• Traditional compiler pipeline design is dated
• We have practically unlimited memory
• Recreating the AST, IR, and ASM on every compile is

extremely wasteful
• Why does code-completion and the compiler use different

frontends

Compiler Re-arch idea

Darser [10]

• Darser is a recursive descent parser generator for LL(1) grammars
• It also generates the AST and a default Visitor
• Not at CT, but as a pre-build step

• It generates “good” error messages
• Not just a generic Node types, but names that reflect the grammar
• Inheriting from the default Visitor is trivial and powerful
• Used right now by GraphQLD

Darser [10]

• Darser is a recursive descent parser generator for LL(1) grammars
• It also generates the AST and a default Visitor
• Not at CT, but as a pre-build step

• It generates “good” error messages
• Not just a generic Node types, but names that reflect the grammar
• Inheriting from the default Visitor is trivial and powerful
• Used right now by GraphQLD

I am out of Slides

	Getting started
	A little bit of Spreadsheet bashing
	Lets draw up a battle plan
	How to work with limited man-power
	Taking a step back
	Homework
	Conclusion
	Appendix
	The End
	Encore
	I am out of Slides

