We’re not crazy, we promise!

Trials and tribulations of a programming language designer

Atila Neves, Ph.D.
DConf 2020

Pertinent quotes

e “Perfection is achieved, not when there is nothing more to add, but when there is

nothing left to take away.” — Antoine de Saint-Exupéry

e “Everything should be made as simple as possible, but not simpler.” — Albert
Einstein

e ‘“Lisp programmers know the value of everything and the cost of nothing” — Alan
Perlis

Why? What?

Why do we care about @safe?

e Less is more: language design principles

What I'd like to be working on

What I'm actually working on

Why do we care about @safe?

e Me as a user: “because I'm lazy”

e Because it's good marketing

Because leaning on the compiler is a good idea

Because defaults matter

WHAT HAVETYPES

|

EVER DONE FOR US?“\

D is a statically typed language
Nobody seems to want to change that (good!)

Type systems don't let friends write bugs

Trade-off: ease-of-use vs defect prevention

Memory safety = preventing bugs

e Bugs due to memory safety violations are particularly costly
e If type systems prevent bugs. .. leverage ours?

e Goal: minimise or eliminate memory safety bugs without limiting the power of a

systems programming language

| don’t want to go back to this:

// In a “10kSLOC C++ codebase
struct SomeStruct { /* .. */ };
SomeStruct onlyGodKnowsWhyThisIsHere[9];

Memory safety errors (single-threaded)

e Qut-of-bounds access
e |ssues calling free
e double free
e freeing a pointer on the stack
o freeing 0x42
e freeing an aliased variable
e Reading from or writing to an invalid pointer
e Use after free

e Pointer to popped part of the stack
e Dereferencing 0x42

e Qut-of-bounds: Slice access checks, foreach
e Issues related to calling free: don't

e Not needed with GC allocated memory anyway
e Don't manually allocate memory
o Leak?

e Invalid pointer usage: ...

GC: automatic memory safety?

e In Java and Go? Yes. In D? No.
e Java doesn’'t have &
e Go does, but it can mean GC allocation:

func NewFile(fd int, name string) *File {
if fd < 0 {

return nil

}

return &File{fd, name, nil, 0}
}

e D: Taking the address of locals can be an issue

e D: Manually managed pointers can be an issue

10

e Infinite lifetime

e GC-allocated memory
e Address of a TLS variable

e Finite lifetime

e Address of a local variable / parameter: fixed by DIP1000
e malloc / allocator: fixed by ...77?7

11

@safe code is easy to write

With -preview=dip1000 and only GC heap allocations:

e Don't do pointer arithmetic, including slicing pointers
e Don't use slices' .ptr property (&slice[0] instead)

e Don't use casts

See https://dlang.org/spec/function.htmlsafe-functions for more

12

@safe and @nogc?

e D proudly advertises that the GC isn't mandatory
e We not so proudly omit the inevitable bugs

e How can we have our GC-averse cake and eat it too?

13

Goal: @safe @nogc code

It's not currently possible to write a @safe vector library type in D:

auto v = vector(1l, 2, 3, 4);
auto s = v[];
v "=5; // could reallocate here

s[3] = 42; // oops

14

Goal: @safe @nogc code

e Tx should always be usable from @safe code

e Infinite lifetime
e Finite scoped lifetime (DIP1000)
e Even if obtained from malloc (freeing however. . .)

15

Ok, @safe is great, but why by default?

e Defaults matter
e dub packages with dependencies can be made @safe

e Fewer bugs all around

16

Less is more

FEATURES]LEAD TO CODE,

17

Less is more

The more features. ..

e The harder it is to teach the language
e The more bugs the implementation has

e The more likely they interact in unexpected ways

18

Out of few, many

Guiding principle: create few orthogonal powerful primitives

Use those powerful primitives to write everything else in

Guideline: prefer library solutions to language features

The default answer to language additions should be no

19

Simplicity as a guiding principle

e Simple: as defined by Rich Hickey in “Simple made easy”

e Simple: unentangled, decoupled

20

Simple vs complex

Pure functions vs impure ones

e const vs auto

values vs references

Explicit vs implicit

algorithms vs for loops

21

Case study: library-based OOP

e OOP doesn’t need to be a language feature

It's a library in Common Lisp (CLOS)
Can be used in C, but not good:

e No subtyping = no type safety (hello void* my old friend)
e Manual initialisation of function slots in the virtual table
e Hard to find actual implementation being called — gdb to the rescue!

Do we need OOP in the language?

22

Why OOP? Returning related types

(mostly stolen from Louis Dionne’s talk “Runtime polymorphism: back to the basics")

struct Car { void accelerate(); I}
struct Truck { void accelerate(); 1}
struct Plane { void accelereate(); }

777 getVehicle(string vehicle) {
switch(vehicle) {
default: throw new Exception("Unknown vehicle " ~ vehicle);
case "car": return Car(...);
case "truck": return Truck(...);

case "plane": return Plane(...);

23

Why OOP? Storing related types

(mostly stolen from Louis Dionne's talk “Runtime polymorphism: back to the basics”)

// stores types that can accelerate

???[] vehicles;

vehicles ~“= Car(...);
vehicles ~= Truck(...);
vehicles ~= Plane(...);

foreach(ref vehicle; vehicles)

vehicle.accelerate;

Goal: manipulate an open set of related types with different representations

24

Obvious D solution: inheritance

interface Vehicle { void accelerate(); }

class Car: Vehicle { override void accelerate() { /* ... */ } }
class Truck: Vehicle { override void accelerate() { /* ... %/ } }
class Plane: Vehicle { override void accelerate() { /* ... %/ } }

Vehicle getVehicle(string vehicle);

Vehicle[] vehicles;

23

Under the hood

// See https://dlang.org/spec/abi.html#classes
struct VehicleVTable {
object.Interface instance;

void function() accelerate;

struct CarImpl {

immutable(void*)* __vptr; // ptr to CarVTable

void* __monitor;

immutable(void*)* __vptr_Vehicle; // ptr to VehiclelVTable

alias Car = CarImplx;
26

Problems with inheritance

Reference semantics (aliasing issues)

Heap allocations

e GC allocations might be an issue for certain applications
e Non-GC allocations introduce memory management issues

Billion dollar error semantics (null)

Intrusive (types must opt-in ahead of time)

Fixed binary layout (did you want monitor? You get monitor)

27

What | actually want (pseudocode)

interface Vehicle { void accelerate(); }

import lib: Motorcycle; // struct Motorcyle { woid accelerate(); }
struct Car { void accelerate(); }

struct Truck { void accelerate(); }

void main() {
Vehicle[] vehicles = [Car(), Truck(), Motorcyle() 1;

foreach(ref vehicle; vehicles)

vehicle.accelerate;

28

What D can do now

import tardy; // https://githudb.com/atilaneves/tardy

interface IVehicle { void accelerate(); }

alias Vehicle = Polymorphic!IVehicle;

import 1lib: Motorcycle; // struct Motorcyle { void accelerate(); F*
struct Car { void accelerate(); }

struct Truck { void accelerate(); }

void main() {
Vehicle[] vehicles = [Vehicle(Car()), Vehicle(Truck()),
Vehicle(Motorcyle()) 1;
foreach(ref vehicle; vehicles)

vehicle.accelerate;

29

The library solution is more flexible

e None of the problems mentioned earlier
e Possibility of user-controlled policies
e Small buffer optimisation
e Default value or reference semantics?
e What allocator to use when heap allocation is needed?
e User-specified binary layout

30

D is a powerful language

e let's use it to its fullest potential
e Let's prefer library solutions to language changes

e No, | don't mean “let's remove classes”

31

What I'd like to work on

e Making automem @safe

e Finishing my reflection library, mirror
e Lightning-fast unittest feedback

e Next-gen Phobos

e Easy C++ interop

e Move semantics

e Implementing “Build systems a la carte” in D

32

Reflection in D

e __traits
e std.traits

Sometimes cumbersome

Akin to using OS threads directly

83

Why mirror? Looping through struct member functions

void func() { // need this for {{, can't be at module scope
// {{ due to alias
static foreach(memberName; __traits(allMembers, MyStruct)) {{
alias member = __traits(getMember, MyStruct, memberName) ;
static if(isPublic!member) { // BYOT
static if (isMemberFunction'!member) { // BYOT
static foreach(overload; __traits(getOverloads,

MyStruct,

memberName)) {

pragma(msg, __traits(identifier, overload));

34

3

Why mirror? Looping through struct member functions

import mirror;

static foreach(overload; MemberFunctionsByOverload!MyStruct) {

pragma(msg, __traits(identifier, overload));

85

mirror: runtime reflection

e Compile-time j run-time
e Compile-time reflection can generate run-time info

e Issue: | don't know of decent use cases

36

What I'm actually working on instead

Reviewing PRs

Making dmd usable with ninja by tracking dependencies like gcc

Improving build speeds (don't forget the linker)

e Removing the -unittest hack
e Possibly look into emitting fewer symbols

Fix linker errors due to templates

e Implementing a version of —allinst that works
e Understanding the current template emission algorithm
e Implementing an algorithm that works

37

What is the -unittest hack?

Once upon a time. ..

module std.foo;
version(unittest) {
void helperFunction(T)() { /* ... */ }

38

Why doesn’t -allinst work?

e Nobody knows

e Speculative templates make it harder:

static if(__traits(compiles, foo!bar))

foo!bar;

39

Questions?

Slide intentionally left blank

40

