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Pertinent quotes

e “Perfection is achieved, not when there is nothing more to add, but when there is

nothing left to take away.” — Antoine de Saint-Exupéry

e “Everything should be made as simple as possible, but not simpler.” — Albert
Einstein

e ‘“Lisp programmers know the value of everything and the cost of nothing” — Alan
Perlis



Why? What?

Why do we care about @safe?

e Less is more: language design principles

What I'd like to be working on

What I'm actually working on



Why do we care about @safe?

e Me as a user: “because I'm lazy”

e Because it's good marketing

Because leaning on the compiler is a good idea

Because defaults matter



WHAT HAVETYPES

|

EVER DONE FOR US?“\

D is a statically typed language
Nobody seems to want to change that (good!)

Type systems don't let friends write bugs

Trade-off: ease-of-use vs defect prevention



Memory safety = preventing bugs

e Bugs due to memory safety violations are particularly costly
e If type systems prevent bugs. .. leverage ours?

e Goal: minimise or eliminate memory safety bugs without limiting the power of a

systems programming language



| don’t want to go back to this:

// In a “10kSLOC C++ codebase
struct SomeStruct { /* .. */ };
SomeStruct onlyGodKnowsWhyThisIsHere[9];



Memory safety errors (single-threaded)

e Qut-of-bounds access
e |ssues calling free
e double free
e freeing a pointer on the stack
o freeing 0x42
e freeing an aliased variable
e Reading from or writing to an invalid pointer
e Use after free

e Pointer to popped part of the stack
e Dereferencing 0x42



e Qut-of-bounds: Slice access checks, foreach
e Issues related to calling free: don't

e Not needed with GC allocated memory anyway
e Don't manually allocate memory
o Leak?

e Invalid pointer usage: ...



GC: automatic memory safety?

e In Java and Go? Yes. In D? No.
e Java doesn’'t have &
e Go does, but it can mean GC allocation:

func NewFile(fd int, name string) *File {
if fd < 0 {

return nil

}

return &File{fd, name, nil, 0}
}

e D: Taking the address of locals can be an issue

e D: Manually managed pointers can be an issue
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e Infinite lifetime

e GC-allocated memory
e Address of a TLS variable

e Finite lifetime

e Address of a local variable / parameter: fixed by DIP1000
e malloc / allocator: fixed by ...77?7
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@safe code is easy to write

With -preview=dip1000 and only GC heap allocations:

e Don't do pointer arithmetic, including slicing pointers
e Don't use slices' .ptr property (&slice[0] instead)

e Don't use casts

See https://dlang.org/spec/function.htmlsafe-functions for more
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@safe and @nogc?

e D proudly advertises that the GC isn't mandatory
e We not so proudly omit the inevitable bugs

e How can we have our GC-averse cake and eat it too?
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Goal: @safe @nogc code

It's not currently possible to write a @safe vector library type in D:

auto v = vector(1l, 2, 3, 4);
auto s = v[];
v "=5; // could reallocate here

s[3] = 42; // oops
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Goal: @safe @nogc code

e Tx should always be usable from @safe code

e Infinite lifetime
e Finite scoped lifetime (DIP1000)
e Even if obtained from malloc (freeing however. . .)
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Ok, @safe is great, but why by default?

e Defaults matter
e dub packages with dependencies can be made @safe

e Fewer bugs all around
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Less is more

FEATURES]LEAD TO CODE,
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Less is more

The more features. ..

e The harder it is to teach the language
e The more bugs the implementation has

e The more likely they interact in unexpected ways
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Out of few, many

Guiding principle: create few orthogonal powerful primitives

Use those powerful primitives to write everything else in

Guideline: prefer library solutions to language features

The default answer to language additions should be no
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Simplicity as a guiding principle

e Simple: as defined by Rich Hickey in “Simple made easy”

e Simple: unentangled, decoupled
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Simple vs complex

Pure functions vs impure ones

e const vs auto

values vs references

Explicit vs implicit

algorithms vs for loops
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Case study: library-based OOP

e OOP doesn’t need to be a language feature

It's a library in Common Lisp (CLOS)
Can be used in C, but not good:

e No subtyping = no type safety (hello void* my old friend)
e Manual initialisation of function slots in the virtual table
e Hard to find actual implementation being called — gdb to the rescue!

Do we need OOP in the language?
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Why OOP? Returning related types

(mostly stolen from Louis Dionne’s talk “Runtime polymorphism: back to the basics")

struct Car { void accelerate(); I}
struct Truck { void accelerate(); 1}
struct Plane { void accelereate(); }

777 getVehicle(string vehicle) {
switch(vehicle) {
default: throw new Exception("Unknown vehicle " ~ vehicle);
case "car": return Car(...);
case "truck": return Truck(...);

case "plane": return Plane(...);
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Why OOP? Storing related types

(mostly stolen from Louis Dionne's talk “Runtime polymorphism: back to the basics”)

// stores types that can accelerate

???[] vehicles;

vehicles ~“= Car(...);
vehicles ~= Truck(...);
vehicles ~= Plane(...);

foreach(ref vehicle; vehicles)

vehicle.accelerate;

Goal: manipulate an open set of related types with different representations
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Obvious D solution: inheritance

interface Vehicle { void accelerate(); }

class Car: Vehicle { override void accelerate() { /* ... */ } }
class Truck: Vehicle { override void accelerate() { /* ... %/ } }
class Plane: Vehicle { override void accelerate() { /* ... %/ } }

Vehicle getVehicle(string vehicle);

Vehicle[] vehicles;
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Under the hood

// See https://dlang.org/spec/abi.html#classes
struct VehicleVTable {
object.Interface instance;

void function() accelerate;

struct CarImpl {

immutable(void*)* __vptr; // ptr to CarVTable

void* __monitor;

immutable(void*)* __vptr_Vehicle; // ptr to VehiclelVTable

alias Car = CarImplx;
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Problems with inheritance

Reference semantics (aliasing issues)

Heap allocations

e GC allocations might be an issue for certain applications
e Non-GC allocations introduce memory management issues

Billion dollar error semantics (null)

Intrusive (types must opt-in ahead of time)

Fixed binary layout (did you want monitor? You get monitor)
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What | actually want (pseudocode)

interface Vehicle { void accelerate(); }

import lib: Motorcycle; // struct Motorcyle { woid accelerate(); }
struct Car { void accelerate(); }

struct Truck { void accelerate(); }

void main() {
Vehicle[] vehicles = [ Car(), Truck(), Motorcyle() 1;

foreach(ref vehicle; vehicles)

vehicle.accelerate;
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What D can do now

import tardy; // https://githudb.com/atilaneves/tardy

interface IVehicle { void accelerate(); }

alias Vehicle = Polymorphic!IVehicle;

import 1lib: Motorcycle; // struct Motorcyle { void accelerate(); F*
struct Car { void accelerate(); }

struct Truck { void accelerate(); }

void main() {
Vehicle[] vehicles = [ Vehicle(Car()), Vehicle(Truck()),
Vehicle(Motorcyle()) 1;
foreach(ref vehicle; vehicles)

vehicle.accelerate;
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The library solution is more flexible

e None of the problems mentioned earlier
e Possibility of user-controlled policies
e Small buffer optimisation
e Default value or reference semantics?
e What allocator to use when heap allocation is needed?
e User-specified binary layout
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D is a powerful language

e let's use it to its fullest potential
e Let's prefer library solutions to language changes

e No, | don't mean “let's remove classes”
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What I'd like to work on

e Making automem @safe

e Finishing my reflection library, mirror
e Lightning-fast unittest feedback

e Next-gen Phobos

e Easy C++ interop

e Move semantics

e Implementing “Build systems a la carte” in D
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Reflection in D

e __traits
e std.traits

Sometimes cumbersome

Akin to using OS threads directly
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Why mirror? Looping through struct member functions

void func() { // need this for {{, can't be at module scope
// {{ due to alias
static foreach(memberName; __traits(allMembers, MyStruct)) {{
alias member = __traits(getMember, MyStruct, memberName) ;
static if(isPublic!member) { // BYOT
static if (isMemberFunction'!member) { // BYOT
static foreach(overload; __traits(getOverloads,

MyStruct,

memberName)) {

pragma(msg, __traits(identifier, overload));
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Why mirror? Looping through struct member functions

import mirror;

static foreach(overload; MemberFunctionsByOverload!MyStruct) {

pragma(msg, __traits(identifier, overload));
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mirror: runtime reflection

e Compile-time j run-time
e Compile-time reflection can generate run-time info

e Issue: | don't know of decent use cases
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What I'm actually working on instead

Reviewing PRs

Making dmd usable with ninja by tracking dependencies like gcc

Improving build speeds (don't forget the linker)

e Removing the -unittest hack
e Possibly look into emitting fewer symbols

Fix linker errors due to templates

e Implementing a version of —allinst that works
e Understanding the current template emission algorithm
e Implementing an algorithm that works
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What is the -unittest hack?

Once upon a time. ..

module std.foo;
version(unittest) {
void helperFunction(T)() { /* ... */ }
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Why doesn’t -allinst work?

e Nobody knows

e Speculative templates make it harder:

static if(__traits(compiles, foo!bar))

foo!bar;
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Questions?

Slide intentionally left blank
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