
We’re not crazy, we promise!

Trials and tribulations of a programming language designer

Átila Neves, Ph.D.

DConf 2020

1

Pertinent quotes

• “Perfection is achieved, not when there is nothing more to add, but when there is

nothing left to take away.” — Antoine de Saint-Exupéry

• “Everything should be made as simple as possible, but not simpler.” — Albert

Einstein

• “Lisp programmers know the value of everything and the cost of nothing” — Alan

Perlis

2

Why? What?

• Why do we care about @safe?

• Less is more: language design principles

• What I’d like to be working on

• What I’m actually working on

3

Why do we care about @safe?

• Me as a user: “because I’m lazy”

• Because it’s good marketing

• Because leaning on the compiler is a good idea

• Because defaults matter

4

Types

• D is a statically typed language

• Nobody seems to want to change that (good!)

• Type systems don’t let friends write bugs

• Trade-off: ease-of-use vs defect prevention

5

Memory safety = preventing bugs

• Bugs due to memory safety violations are particularly costly

• If type systems prevent bugs. . . leverage ours?

• Goal: minimise or eliminate memory safety bugs without limiting the power of a

systems programming language

6

I don’t want to go back to this:

// In a ~10kSLOC C++ codebase

struct SomeStruct { /* .. */ };

SomeStruct onlyGodKnowsWhyThisIsHere[9];

7

Memory safety errors (single-threaded)

• Out-of-bounds access

• Issues calling free

• double free

• freeing a pointer on the stack

• freeing 0x42

• freeing an aliased variable

• Reading from or writing to an invalid pointer

• Use after free

• Pointer to popped part of the stack

• Dereferencing 0x42

8

Mitigations in D

• Out-of-bounds: Slice access checks, foreach

• Issues related to calling free: don’t

• Not needed with GC allocated memory anyway

• Don’t manually allocate memory

• Leak?

• Invalid pointer usage: . . .

9

GC: automatic memory safety?

• In Java and Go? Yes. In D? No.

• Java doesn’t have &

• Go does, but it can mean GC allocation:

func NewFile(fd int, name string) *File {

if fd < 0 {

return nil

}

return &File{fd, name, nil, 0}

}

• D: Taking the address of locals can be an issue

• D: Manually managed pointers can be an issue

10

Pointers in D

• Infinite lifetime

• GC-allocated memory

• Address of a TLS variable

• Finite lifetime

• Address of a local variable / parameter: fixed by DIP1000

• malloc / allocator: fixed by . . . ???

11

@safe code is easy to write

With -preview=dip1000 and only GC heap allocations:

• Don’t do pointer arithmetic, including slicing pointers

• Don’t use slices’ .ptr property (&slice[0] instead)

• Don’t use casts

See https://dlang.org/spec/function.htmlsafe-functions for more

12

@safe and @nogc?

• D proudly advertises that the GC isn’t mandatory

• We not so proudly omit the inevitable bugs

• How can we have our GC-averse cake and eat it too?

13

Goal: @safe @nogc code

It’s not currently possible to write a @safe vector library type in D:

auto v = vector(1, 2, 3, 4);

auto s = v[];

v ~= 5; // could reallocate here

s[3] = 42; // oops

14

Goal: @safe @nogc code

• T* should always be usable from @safe code

• Infinite lifetime

• Finite scoped lifetime (DIP1000)

• Even if obtained from malloc (freeing however. . .)

15

Ok, @safe is great, but why by default?

• Defaults matter

• dub packages with dependencies can be made @safe

• Fewer bugs all around

16

Less is more

17

Less is more

The more features. . .

• The harder it is to teach the language

• The more bugs the implementation has

• The more likely they interact in unexpected ways

18

Out of few, many

• Guiding principle: create few orthogonal powerful primitives

• Use those powerful primitives to write everything else in

• Guideline: prefer library solutions to language features

• The default answer to language additions should be no

19

Simplicity as a guiding principle

• Simple: as defined by Rich Hickey in “Simple made easy”

• Simple: unentangled, decoupled

20

Simple vs complex

• Pure functions vs impure ones

• const vs auto

• values vs references

• Explicit vs implicit

• algorithms vs for loops

21

Case study: library-based OOP

• OOP doesn’t need to be a language feature

• It’s a library in Common Lisp (CLOS)

• Can be used in C, but not good:

• No subtyping = no type safety (hello void* my old friend)

• Manual initialisation of function slots in the virtual table

• Hard to find actual implementation being called — gdb to the rescue!

• Do we need OOP in the language?

22

Why OOP? Returning related types

(mostly stolen from Louis Dionne’s talk “Runtime polymorphism: back to the basics”)

struct Car { void accelerate(); }

struct Truck { void accelerate(); }

struct Plane { void accelereate(); }

??? getVehicle(string vehicle) {

switch(vehicle) {

default: throw new Exception("Unknown vehicle " ~ vehicle);

case "car": return Car(...);

case "truck": return Truck(...);

case "plane": return Plane(...);

}

} 23

Why OOP? Storing related types

(mostly stolen from Louis Dionne’s talk “Runtime polymorphism: back to the basics”)

// stores types that can accelerate

???[] vehicles;

vehicles ~= Car(...);

vehicles ~= Truck(...);

vehicles ~= Plane(...);

foreach(ref vehicle; vehicles)

vehicle.accelerate;

Goal: manipulate an open set of related types with different representations

24

Obvious D solution: inheritance

interface Vehicle { void accelerate(); }

class Car: Vehicle { override void accelerate() { /* ... */ } }

class Truck: Vehicle { override void accelerate() { /* ... */ } }

class Plane: Vehicle { override void accelerate() { /* ... */ } }

Vehicle getVehicle(string vehicle);

Vehicle[] vehicles;

25

Under the hood

// See https://dlang.org/spec/abi.html#classes

struct VehicleVTable {

object.Interface instance;

void function() accelerate;

}

struct CarImpl {

immutable(void*)* __vptr; // ptr to CarVTable

void* __monitor;

immutable(void*)* __vptr_Vehicle; // ptr to VehicleVTable

}

alias Car = CarImpl*;
26

Problems with inheritance

• Reference semantics (aliasing issues)

• Heap allocations

• GC allocations might be an issue for certain applications

• Non-GC allocations introduce memory management issues

• Billion dollar error semantics (null)

• Intrusive (types must opt-in ahead of time)

• Fixed binary layout (did you want monitor? You get monitor)

27

What I actually want (pseudocode)

interface Vehicle { void accelerate(); }

import lib: Motorcycle; // struct Motorcyle { void accelerate(); }

struct Car { void accelerate(); }

struct Truck { void accelerate(); }

void main() {

Vehicle[] vehicles = [Car(), Truck(), Motorcyle()];

foreach(ref vehicle; vehicles)

vehicle.accelerate;

}

28

What D can do now

import tardy; // https://github.com/atilaneves/tardy

interface IVehicle { void accelerate(); }

alias Vehicle = Polymorphic!IVehicle;

import lib: Motorcycle; // struct Motorcyle { void accelerate(); }

struct Car { void accelerate(); }

struct Truck { void accelerate(); }

void main() {

Vehicle[] vehicles = [Vehicle(Car()), Vehicle(Truck()),

Vehicle(Motorcyle())];

foreach(ref vehicle; vehicles)

vehicle.accelerate;

}
29

The library solution is more flexible

• None of the problems mentioned earlier

• Possibility of user-controlled policies

• Small buffer optimisation

• Default value or reference semantics?

• What allocator to use when heap allocation is needed?

• User-specified binary layout

30

D is a powerful language

• Let’s use it to its fullest potential

• Let’s prefer library solutions to language changes

• No, I don’t mean “let’s remove classes”

31

What I’d like to work on

• Making automem @safe

• Finishing my reflection library, mirror

• Lightning-fast unittest feedback

• Next-gen Phobos

• Easy C++ interop

• Move semantics

• Implementing “Build systems à la carte” in D

32

Reflection in D

• traits

• std.traits

• Sometimes cumbersome

• Akin to using OS threads directly

33

Why mirror? Looping through struct member functions

void func() { // need this for {{, can't be at module scope

// {{ due to alias

static foreach(memberName; __traits(allMembers, MyStruct)) {{

alias member = __traits(getMember, MyStruct, memberName);

static if(isPublic!member) { // BYOT

static if(isMemberFunction!member) { // BYOT

static foreach(overload; __traits(getOverloads,

MyStruct,

memberName)) {

pragma(msg, __traits(identifier, overload));

}

}

}

}}

}

34

Why mirror? Looping through struct member functions

import mirror;

static foreach(overload; MemberFunctionsByOverload!MyStruct) {

pragma(msg, __traits(identifier, overload));

}

35

mirror: runtime reflection

• Compile-time ¿ run-time

• Compile-time reflection can generate run-time info

• Issue: I don’t know of decent use cases

36

What I’m actually working on instead

• Reviewing PRs

• Making dmd usable with ninja by tracking dependencies like gcc

• Improving build speeds (don’t forget the linker)

• Removing the -unittest hack

• Possibly look into emitting fewer symbols

• Fix linker errors due to templates

• Implementing a version of -allinst that works

• Understanding the current template emission algorithm

• Implementing an algorithm that works

37

What is the -unittest hack?

Once upon a time. . .

module std.foo;

version(unittest) {

void helperFunction(T)() { /* ... */ }

}

38

Why doesn’t -allinst work?

• Nobody knows

• Speculative templates make it harder:

static if(__traits(compiles, foo!bar))

foo!bar;

39

Questions?

Slide intentionally left blank

40

