

Great Programming
with

ImportC

by Walter Bright
Dlang.org

D is designed to be easy to interface
to C

● Zero cost
● Compatible types
● Familiar syntax
● Compatible semantics

To Make C Code Accessible From D

● Simply translate the C .h file to D
● It's easy
● Doesn't take long
● Shouldn't be a problem

To Make C Code Accessible From D

● Simply translate the C .h file to D
● It's easy
● Doesn't take long
● Shouldn't be a problem

How Wrong Can We Be

● Preprocessor macros obfuscate the code
● Mass of #includes can explode to 10,000 lines

or more
● Need for competence in both C and D
● No reliable way to verify correctness of

translation
● Tedious

Continued...

● Cannot just write one's own system .h files
● Portability problems

– A C long can be a D int or a D long

– char can be signed or unsigned

– Bitfields

– alignment

● .h files change over time

Solutions

● We provide a subset of the system C .h files
already carefully translated to D

● The Diemos project is a crowdsourced
repository where people share the work the
translate .h files
– Of course that doesn't work for proprietary C code

Experience shows
it just isn't good enough and is a

significant barrier

Enter The .h To .d Translator

● Such a great idea, we wrote three of them:
– htod by Walter Bright (that's me)

– DStep by Jacob Carlborg

– dpp by Atila Neves

Much improves the situation,
 but:

● There's always a “but”
● Clumsy to set up with the build system
● Creates extra files
● Has difficulties translating things like bit fields
● Friction

What would be the simplest,
most obvious, most perfect way
for D code to simply get all the
declarations from, say, stdio.h?

import stdio;

Once you've seen that, you can't unsee it. That is
what the user experience has to be.

it must just work

What's the obvious way to make that just work?

Incorporate a freakin' real live actual honest-to-
god C compiler into the D compiler!

This idea has come up before, but of course it is
an eeediotic idea only a naïve madman would

propose.

Buuuuuuuuttt, maybe we shouldn't be so hasty. C
is a simple language. I've written a C compiler. I

could probably whip one out in a weekend, right?

And thus

 ImportC
 was conceived!

(cue dramatic music)

First Gigantic Problem

● The preprocessor
– Preprocessor metaprogramming

– D has no analog for text macros

– Preprocessing has lots of switches for it

– Just no way to reliably deal with all the nutburger
use of C macros out there in the wild

● This problem has stymied us for years
● But there is a solution staring us in the face

Abandon the Preprocessor!

● Have ImportC only work on preprocessed files
● It all fits in one file
● C preprocessors already exist as standalone

programs
– Don't have to worry about getting it right

● Only the macros are of interest to D
– Dpp has shown they can be handled in an ad-hoc manner

– But for now we'll just not be concerned about it

Next Problems:
need a C

● Lexer
● Parser
● Semantic analysis
● Code generation

Layout of the D compiler

Lexer

Parser

Semantic

Backend

With ImportC

Lexer

Parser

Semantic

Backend

C Parser

Have to tweak the lexer and
semantic, but it can work

Ground Rules

● C11 is baseline
● No implicit function declarations
● No warnings
● No printf checking
● Not fixing C
● Minimal C extensions
● No zoo of compiler switches

– It should “just work”

Lexing differences

● Different keywords
– Signed, unsigned, register, inline, typedef,

_Static_assert, restrict, volatile, _Alignas, _Alignof,
_Atomic, _Bool, _Complex, _Imaginary, _Noreturn,
_Thread_local

● Numeric literals
● #pragma

C parsing is just not that
complicated

● Same old recursive descent
● Needs arbitrary lookahead
● Cannot use symbol table to disambiguate parse

– C is not designed to separate parsing from
semantic

– But we're going to do it!

Ambiguous Syntax

(A)(B)

Cast or function call? Cannot determine that
without knowing if A is a function or a type.

Turn the construct into a special AST node,
which is then rewritten by the semantic pass
into a cast expression or a function call AST.

One Big Simplification

● C doesn't have modules. It's just one big
completely self-contained file.
– After preprocessing, of course!

Some constructs do not exist in D

● - >
● _Generic
● (type-name) { initializer-list }
● Add new AST nodes for them, and add

semantic routines to rewrite them into D AST
nodes

Bit Fields

● Cannot determine them at parse time
– So make an AST node for them

– Code generator already works with bit fields

● Underdocumented
● But – worked out very nicely

– Considering adding it to D

Old-Style Function Declarations

int foo(a, b)
int a;
double d;
{
 ...
}

Very Different Static Initializers

● Add special AST node for them
– Again, cannot determine their shape in the parse

pass

● Translate them into D static initializers in
semantic pass

#pragma pack

● Non-standard
● Under-documented
● Kludgey
● Had to implement it anyway, as too much

existing code used it

int
#pragma pack(8)
 x
#pragma pack()
 ;

Tag Name Space

struct S { … };
int S;

Using two parallel tables consumes too much
time and space, so used separate hash table
for the tag names.

Advantages (Enhancements?)

int x = square(2);
int square(int i) {
 return i * i;
}

forward references and
compile time function execution

Problems

● Don't have a C test suite
– Don't really like the old C one I have

● Const is transitive in D semantics
– Too hard to change type system for C semantics

– T *const p; is const pointer to mutable in C, const
pointer to const in ImportC

– Surprisingly, this hasn't caused trouble with D
interfacing to C, it seems the D semantics are how
people naturally use const

Additional Uses

● Use it as a fast C compiler
● D compiler “dogfoods” C libraries
● Convenient when needing a bit of C code to

interface
● Convenient when mixing and matching C and D

modules

Conclusion

● Transformative in ease of interfacing to C
● No need to translate .h files anymore
● Immunized from changes in .h files
● Available now as beta

References

● https://dlang.org/spec/importc.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

