O

TranslatingCto D

TranslatingCto D

e Why?

e How?

e The tool | made to automate it
o Aftermath

Why

e Lots of C code out there
e C code snippets in docs / stack overflow

e Want to use them in D project

Sometimes changes are needed

send {
INPUT inputs['] = {};
// ..
UINT uSent = SendInput(ARRAYSIZE(inputs), inputs,

core.sys.windows.windows;
send() A
INPUT[/] inputs;
// ...
UINT uSent = SendInput(inputs.length, inputs.ptr, INPUT.sizeof);

Sometimes not &

// Identical in both C and D
fabs
(x <

Why

e Single file C libraries

https://github.com/nothings/stb

e Simply copy them into your project

e Some of them translated to D for the same convenience

https://github.com/adamdruppe/arsd (vorbis, ttf)

https://github.com/nothings/stb
https://github.com/adamdruppe/arsd

Why

Larger ports:

e https://github.com/schveiguy/draylib

o https://github.com/AuburnSounds/audio-formats

e https://github.com/d-gamedev-team/dimgui

https://github.com/schveiguy/draylib
https://github.com/AuburnSounds/audio-formats
https://github.com/d-gamedev-team/dimgui

Why

Libraries | translated:

e https://github.com/nothings/stb/blob/master/stb perlin.h (400
| OC)

e https://github.com/RandyGaul/cute headers/blob/master/cute pn
g.h (2 KLOC)

e https://github.com/matp/tiny-regex (1 KLOC)
o https://github.com/glfw/glfw (40 KLOC)
e https://github.com/andrewrk/libsoundio (10 KLOC)

https://github.com/nothings/stb/blob/master/stb_perlin.h
https://github.com/RandyGaul/cute_headers/blob/master/cute_png.h
https://github.com/matp/tiny-regex
https://github.com/glfw/glfw
https://github.com/andrewrk/libsoundio

Those aren't single file!

True, but still useful to bein D

e dub has no support for compiling C libraries
o hard to configure /

e Dynamic linking is clumsy
o need to make sure user has right .dll/.so

e Static linking is error-prone

o fiddle with linker flags

Linker Errors!

LINK : warning LNK4098: defaultlib 'MSVCRT' conflicts with use of other 1libs
use /NODEFAULTLIB:library

glfw3.1lib(win32_init.c.obj) : error LNK2019:
unresolved external symbol __imp__RegisterDeviceNotificationW@12
referenced in function _createHelperWindow

11d-1ink: error: undefined symbol: __GSHandlerCheck
11d-1ink: error: undefined symbol: __security_check_cookie
11d-1ink: error: undefined symbol: __security_cookie

10

Why

e Switch legacy code to a modern language

e DMD used to be writtenin 'C+'
(C++ but sticking to C feature set + classes)

e Now in D (frontend 2015, backend 2018)

e Same for tools such as Digital Mars 'make':

https://dlang.org/blog/2018/06/11/dasbetterc-converting-make-c-

to-d/

11

https://dlang.org/blog/2018/06/11/dasbetterc-converting-make-c-to-d/

How

Relatively easy, because D has:

e Familiar syntax

e C features

- tyves (EXEEECT], N RS, ESERTED)
o operators (FI B B
o statements (12y do for)

e "If it looks like C and compiles, it acts the same"

12

How

e Programming in D for C Programmers:
https://dlang.org/articles/ctod.html

e Copy the C code

e Give it a] extension

. Add on top

e Edit until dmd stops giving errors

13

https://dlang.org/articles/ctod.html

Approach

Walter Bright approach:

e Do it one function at a time

e Run the test suite after each translation

e Resist the urge to fix, refactor, clean up, etc.

14

Approach

My approach:

e Do it all at once
e Once it's finally done, debug the things that are broken

e Still, don't refactor early

15

Changes: syntax

L (int) X cast(int) x

sizeof Xx

[
VS
N

X.sizeof

L NULL null

1. 1.0f

typedef struct {} S;

e Cidentifiers that are D keywords,

16

Changes: statements
* Add to inD

e Add for switch case fall through
e Empty statement [disallowed,
M if (errorCode = apiFunc()) K IRENINV=

for (;;){}

o workaround: FREEECIEEIE L CRERC IO DI

Melgll if (auto errorCode = apiFunc())

17

Changes: pointers

e D: use [to take address of function,
e D: use to take address of static array

e No implicit pointer casts like C:

18

Changes: basic types

uint16 x;

__ul6 x;

ushort x;

19

Changes: basic types

e Be careful of variable sizes

e D's 8-byte inCis

C: sizeof long Windows Linux

32-bit 4 4
64-bit 4 3

L import core.stdc.config: c_long;

20

Changes: complex types

e C typesread like expressions

x[31[4];

*(*bar) (int);

e D typesread fromright to left

[4]1[3] x;

char* function() bar;

21

Initializers

C99 has expressive struct/array initializers with designators

f() A
drawRect(&(Rectangle){.pos
arr[] = {[3] = 30, [2]

f() A

tmp = Rectangle(pos: vec2(, /), size: vec2(
drawRect (&tmp) ;
[4] arr = [3: 36, 2: 20];

Pitfall: initializers
In D, and initialize to BN / B&a. so make it explicit:

.F

|] buffer =

In C, local variables are uninitialized by default. In D you need

fun {

[] buffer =

23

Pitfall: static

e C has no name mangling

e public functions often have prefixes: [iERTEM=0l, IRl ER:

e private functions use

init {}

e D's is different! Needs mangling to avoid name conflict.

(D) init() {}

24

Pitfall: passing static arrays by value

e Static arrays are consistently value typesin D

e In C, they are passed as a pointer

Pitfall: passing static arrays by value

Looks less obvious in actual code:

RegexCharacterClass[(UCHAR_MAX + CHAR_BIT - 1) / CHAR_BIT];

regexCharacterClassContains

{
klass[ch / CHAR_BIT] & (' << ch % CHAR_BIT);

regexCharacterClassAdd
klass[ch / CHAR_BIT] |= << (ch % CHAR_BIT);
ch;

26

Pitfall: address of slice

I've done this with OpenGL's R T L a -

float[] vertices = [- y = , y -
bufferData(size_t size, * buf);

main() {
bufferData(vertices.sizeof, &vertices); // WRONG

o points to the slice's [FELRa8) Pair, not the data!
+ Similarly s simoly

27

Macros

e Before C files are compiled, the pre-processor expands macros
e D doesn't have it

e The C Preprocessor vs D:
https://dlang.org/articles/pretod.html

28

https://dlang.org/articles/pretod.html

Macros

Some are easy

lib.something;
PI =
SQR(T) (T x) {
(Windows) {}

Macros

When non-trivial, expand them, or use string mixins

libFunc
INITIAL_CHECK

INITIAL_CHECK =
libFunc() {
(INITIAL_CHECK):

30

Macros

e When the macros are part of a cross-platform API, give up

core.atomic;

C
D:

31

Pitfall: Macros

e Watch for arguments with side effects

S

Reduce tedious typing

e Translating by hand is tedious
e VIM macros only help so much

e dstep can translate types, but only in headers, and gives errors:

/usr/include/alsa/input.h:65:50: error: unknown type name 'FILE'

/usr/include/alsa/input.h:66:69: error: unknown type name 'ssize_t'
/usr/include/alsa/input.h:73:53: error: unknown type name 'size_t'

e Regular expressions don't scale

e | need a tool using a C parser

33

ctod

Try it!

https://dkorpel.github.io/ctod/

dub fetch ctod
dub run ctod -- yourfile.c

34

https://dkorpel.github.io/ctod/

ctod: concept

e Uses tree-sitter parser, which has excellent error recovery
e Performs string replacements on AST nodes

e Prints back as close to valid D as possible

35

ctod: development

Run on a C file

Inspect output, look for invalid D

Enter the C code in the tree-sitter playground
Add code to recognize and translate the pattern

Repeat

36

https://tree-sitter.github.io/tree-sitter/playground

ctod: development

More and more advanced
Parses types and function signatures

Keeps symbol table so add to static arrays

Dangerously close to C-compiler

37

ctod: limitations

e macro translation very primitive

e Parser trips up on weird macros

GLFWAPI glfwFun {}

e But: noerrors!

38

Aftermath

e Translation done, time to make it more idiomatic

{ REGEX_NODE_TYPE_EPSILON, REGEX_NODE_TYPE_CHARACTER }
memcpy (a, b, (a));
(i=0; 1< n; i++) //...

NodeType { epsilon, character }
al[] = b[];
(i; ...n) //...

S

Aftermath

e Add attributes

* Get for free

o PIA: replace global error variable with returned error code
e Can we add [’

40

Aftermath: safe

e Replace C-strings / pointer-length-pairs with slices

fun

fun ([] data, (char)[] str)

e Replace pointer math with indices

e Replace re-inventions of dynamic arrays

41

Aftermath: safe

e | made the png lib translation and added fuzz tests
e Basically all array index operations were unsafe

e Checks that were there not robust to overflow:

int readlLength = readBits(...);
int backwardsLength = readBits(...);

CHECK(s->out - backwardsLength >= s->begin);
CHECK(s->out + readLength <= s->end);

e Dangling pointer into array after it gets resized

42

Should you translate C to D?

e Still alot of manual work

e Translation gets behind when update releases
o | translated glfw 3.3.2, now at 3.3.8

e DMD can now compile .c files! (ImportC)
e Small / stable code: go for it!

e |f you're maintaining it: go for it!

