
A Plastic Skeleton
and associated ramblings

Prepare your bingo cards.

encapsulation antifragile Hemispheric integration characteristic scale

OODA Abstraction Adaptability Culture

implicit Plasticity Any extended metaphor Overreaching
generalisations

structural A Plastic Skeleton

monorepo Pointless semantic
nonsense explicit adaptive

Warning, opinions inside

This is mostly about 1 to N,

not 0 to 1

What is good code?
Yes really I’m sorry it’s that sort of talk

What is good code?

• At some time t, the code could be considered good if using it brings benefit.

Yes really I’m sorry it’s that sort of talk

What is good code?

• At some time t, the code could be considered good if using it brings benefit.

• But the code is - some might say sadly - still around at and we will want it to
be providing benefits then, too!

t + Δt

Yes really I’m sorry it’s that sort of talk

What is good code?

• At some time t, the code could be considered good if using it brings benefit.

• But the code is - some might say sadly - still around at and we will want it to
be providing benefits then, too!

t + Δt

• So in fact, the value of the code is the present value of all its future costs and
benefits.

Yes really I’m sorry it’s that sort of talk

What is good code?

• At some time t, the code could be considered good if using it brings benefit.

• But the code is - some might say sadly - still around at and we will want it to
be providing benefits then, too!

t + Δt

• So in fact, the value of the code is the present value of all its future costs and
benefits.

• But - equally applicable to assets generally as it is to code - how on earth can we
know the value of some benefit or cost in the future?

Yes really I’m sorry it’s that sort of talk

Well, maybe we can anticipate future
demands and circumstances?

Well, maybe we can anticipate future
demands and circumstances?

Well, maybe we can anticipate future
demands and circumstances?

YOUR HUBRIS WILL BE PUNISHED

Well if the only way of telling good from bad is to know the
future

And I can’t anticipate the future

How can I write good code?

You can make your code easy to
change

Well, yes and no.

Often small code - not painfully squeezed code, just no
bigger than is necessary to comfortably do the job - is

going to be easier to change than your cleverly designed
super-composable code

Decoupling, composability, all
that good stuff?

YAGNI?

YAGNI?

YAGNI?

Yes, but be careful.

Fear Of The Code

Fear Of The Code

I have a constant fear

the code is getting large

🤘

Fear Of The Code

Fear Of The Code

I have a paranoia

I might have to code

🤔

We should be afraid of code

We should be afraid of code

But not of changing code

Making design decisions that make adding features very small diffs,
doing so is back to predicting the future: you don’t know what

features will be needed, so you don’t know what flexibility to include.

Of course, if the cost is low, do it! Some things are predictable &
cheap to prepare for.

Don’t be afraid of actually hitting the keyboard a
bunch.

The complexity/complicatedness of the code, not
number of lines you touch today.

Flexibility vs Adaptability
Building in flexibility ahead of time is optimising for a set of known

knowns & known unknowns. You don’t treat them all equally (some you
ignore entirely). And what about the unknown unknowns? The future is a

strange place.

The only way I know to prepare for the unknown is to be able to change,
to be adaptable.

Adaptability is more universal than flexibility

This is the key property that makes it better
able to handle the future.

Coding is creative

Creativity is mostly listening

Listening is hard when it’s noisy

(Boilerplate, extraneous fluff,

muddy sound)

Adaptable/plastic features of D

Adaptable/plastic features of D
• The basic building block: struct

Adaptable/plastic features of D
• The basic building block: struct

• The GC

Adaptable/plastic features of D
• The basic building block: struct

• The GC

• Sane metaprogramming

Adaptable/plastic features of D
• The basic building block: struct

• The GC

• Sane metaprogramming

• template functions + static if

Adaptable/plastic features of D
• The basic building block: struct

• The GC

• Sane metaprogramming

• template functions + static if

• Code moulds itself statically to other code

Adaptable/plastic features of D
• The basic building block: struct

• The GC

• Sane metaprogramming

• template functions + static if

• Code moulds itself statically to other code

• Some untellable combination of features that fit together

Adaptable/plastic features of D
• The basic building block: struct

• The GC

• Sane metaprogramming

• template functions + static if

• Code moulds itself statically to other code

• Some untellable combination of features that fit together

• Encapsulation of awfulness

Adaptable/plastic features of D
• The basic building block: struct

• The GC

• Sane metaprogramming

• template functions + static if

• Code moulds itself statically to other code

• Some untellable combination of features that fit together

• Encapsulation of awfulness

• D, at is best, is SaneHackerLang

override string toString() @safe const {

 import std.conv : text;

 import std.string : toLower;

 import std.algorithm : map;

 import std.array : join;

 final switch (tag) with (Tag) {

 static foreach (t; [TVoid, TInteger, TNumber, TChar, TBoolean,

 TAny]) {

 case t:

 return t.text.toLower[1 .. $];

 }

 static foreach (t; [TUni, TOverloads, TStruct, TFun, TVar,

 TNamed]) {

 mixin(`case t: return `, getterName(t), `.toString;`);

 }

 }

}

// somePackage/someModule.d

Nullable!int foo(string a, FancyInt b);

FancyInt bar(FancyInt[] r);

// and so on ...

// inside a function that is wrapping code for SIL

handlers.wrapAll!(

 TypeMaps!(

 ParamTypeMaps!((long x) => FancyInt.sillyCtor(x)),

 ReturnTypeMaps!((FancyInt x) => x.getInt)),

 "somePackage.someModule");

Flexibility of structs & metaprogramming:

Good because you can customise without (much)

compromise or breakage

Bad because you accumulate shims and cleverness

Mostly small codebases

Mostly library/language work

D Culture

When I first started to working
professionally with D I went to great effort to

break everything up in to packages &
separate repos, because that was the default

that came from the community

I was wrong, I should have focused on the
problem at hand

Scope & monorepos

Scope & monorepos
• The D community is heavily biased towards language & library developers

Scope & monorepos
• The D community is heavily biased towards language & library developers

• This is great, it tends to mean people have an interest in “doing it right” and making
really great, usable abstractions

Scope & monorepos
• The D community is heavily biased towards language & library developers

• This is great, it tends to mean people have an interest in “doing it right” and making
really great, usable abstractions

• But it also is a heavy bias towards quite “isolated” development, where it assumed that
the consumers of your work interact with you by the occasional complaint or bugfix, but
mostly are silent

Scope & monorepos
• The D community is heavily biased towards language & library developers

• This is great, it tends to mean people have an interest in “doing it right” and making
really great, usable abstractions

• But it also is a heavy bias towards quite “isolated” development, where it assumed that
the consumers of your work interact with you by the occasional complaint or bugfix, but
mostly are silent

• Building internal software at a larger company setting you have many users, but you
have the luxury of actually knowing them! You can probably see all their code and you
have some common goals.

Scope & monorepos
• The D community is heavily biased towards language & library developers

• This is great, it tends to mean people have an interest in “doing it right” and making
really great, usable abstractions

• But it also is a heavy bias towards quite “isolated” development, where it assumed that
the consumers of your work interact with you by the occasional complaint or bugfix, but
mostly are silent

• Building internal software at a larger company setting you have many users, but you
have the luxury of actually knowing them! You can probably see all their code and you
have some common goals.

• Breaking changes vs stable interfaces have a different trade off here

Scope & monorepos
• The D community is heavily biased towards language & library developers

• This is great, it tends to mean people have an interest in “doing it right” and making
really great, usable abstractions

• But it also is a heavy bias towards quite “isolated” development, where it assumed that
the consumers of your work interact with you by the occasional complaint or bugfix, but
mostly are silent

• Building internal software at a larger company setting you have many users, but you
have the luxury of actually knowing them! You can probably see all their code and you
have some common goals.

• Breaking changes vs stable interfaces have a different trade off here

• Putting everything in one repo can really help with breaking down the clever barriers and
just having straightforward code that does something

Pull don’t push

Observe: read the code, read the diffs, read the user feedback, read other
developer’s feedback

Orient: understand what the code is doing, how it structured, what about
it is lacking for the endpoint you desire

Decide: work out roughly what the next diff will be

Act: write the diff and push it

OODA loop of coding:

Come work for us!

jcolvin at symmetryinvestments dot com

https://bit.ly/3Joc4GO

https://bit.ly/3Joc4GO

Good coding practice is
antifragile

