
The Present and Future of the D programming Language

Átila Neves, Ph.D.

DConf 2022

1



Timey Wimey Wibbly Wobbly

2



Where we want to go

• Minimal recompiling daemon

• Sub 20ms iteration cycles

• Fix the language without breaking user’s code

• Phobos v2 (and v3, v4, . . . )

• “Header”-only Phobos

• More attribute inference
3



How do we get there?

• Crawl before we can walk

4



The state of the struct

• We have a GC so we’re memory safe (except when not)

• @nogc exists (except not trivial)

• Justified complaints about unfinished features

5



Unfinished Business

• The preview switches

• shared

• std.experimental

• What else?

6



Strategy for the previews

• Check to see if druntime/phobos/projects compile

• Check filed issues

• Decide whether to transition

• Print deprecation warnings unless -revert is used

• Switch the default: -revert can still be used

7



Remaining preview switches

• dip1008 (bug)

• fieldwise

• fixAliasThis

• rvalueRefParam (bug)

• nosharedaccess (bug)

• in

• inclusiveincontracts

• shortenedMethods

8



shared

• Unclear what the community means by “unfinished”

• Bugs prevent -preview=nosharedaccess being made the default

• Focus on using shared directly is misguided

• Library help needed with something similar to fearless

• And/or structured concurrency in Phobos

9



fearless — the opposite of BYOM

• Shamelessly “inspired” by Rust’s std::sync::Mutex

• Convention Driven Development doesn’t scale

• DIP1000 helps with limiting access to the shared state

10



fearless — the opposite of BYOM

struct Foo { int i; }

auto foo = gcExclusive!Foo(42);

{

int* oldIntPtr; // only here to demonstrate scopes, see below

scope xfoo = foo.lock(); // get exclusive access

xfoo.i = 1; // ok, locked mutex

// ok to assign to a local that lives less

int* intPtr;

static assert(__traits(compiles, intPtr = &xfoo.i));

// not ok to assign to a local that lives longer

static assert(!__traits(compiles, oldIntPtr = &xfoo.i));

}

11



fearless — the opposite of BYOM

void func(Tid tid) @safe {

receive(

// ref Exclusive!Foo doesn't compile, use pointer instead

// look ma, no shared

(Exclusive!Foo* m) {

auto xfoo = m.lock;

xfoo.i++;

},

);

}

12



std.experimental

• Doesn’t seem to have worked as intended

• checkedint merged months ago

• code.dlang.org seems like a better alternative

• std.sumtype validates this approach

• Phobos on dub?

13



std.experimental.typecons

• Unlike allocator and logger, it’s quite small

• The plan: go over it and move to typecons

14



std.experimental.logger

• I consulted with Robert over what needed finishing

• I looked at all the bugs that were open — no showstoppers

• Recently moved to std.logger

15



Open questions on std.experimental.allocator

• “Default” go-to allocators

• Synchronization setting global allocator state

• Lifetimes of the allocators themselves. RC?

• More examples of “classic” high-performance allocators in showcase

• Relationship between allocators and the GC?

• What is the “porcelain” of allocators?

16



Go-to allocators

• It can’t be theAllocator / processAllocator

theAllocator = myAllocator;

{

auto v0 = vector(1, 2);

theAllocator = otherAllocator;

} // dtor called here: oops

17



Go-to allocators: solutions

• Only allow setting the process allocator once

• Only allow setting the thread allocator at thread creation

• Only allow replacing the allocator if no memory was allocated

• Only allow setting the allocator if the current one is the GC

18



Synchronization setting global allocator state

• Solution: don’t

• Aliasing makes this worse

19



Showcase classic allocators

• What are the examples?

20



Allocators and the GC

• Conceptually the GC is an allocator

• But it has guarantees that no other allocator has

21



Allocator porcelain

• Users shouldn’t be allocating memory themselves

• Instead we should have library types to handle that:

• vector

• RC smart pointer

• Unique smart pointer

• The focus, again, should be on high-level APIs

• Nobody should be calling malloc/free

22



Allocators: @nogc?

• A lot of GC resistance is a perception issue

• @nogc is important for that

• But @nogc lacking in the allocator interface

23



The future

• “Header”-only Phobos

• Phobos v2

• Editions

• More attribute inference

• And many more. . .

24



Header-only Phobos

• Problem: distributed binary not built with same flags as the user’s

• Origin of the unittest hack (since removed)

• dub?

25



Phobos v2

Goals:

• Make breaking changes

• No changes to Phobos v1

• Share code between them

• @nogc

26



Editions

• Making breaking changes that don’t break

• Opt-in per module

• Possible that we can’t change everything

• Likely complicated compiler refactoring

27



More attribute inference

• In practice, most D code seems to be open-source

• If the source is available. . . infer?

• Not just a D problem: constexpr Foo getFoo() noexcept const;

28



In short

• The priority should be fixing bugs and finishing features

• Only then should we look to expand

• The focus should be in high-level usage

• Help needed fixing bugs

29



Questions?

Slide intentionally left blank

30


