The Present and Future of the D programming Language

Atila Neves, Ph.D.
DConf 2022



Timey Wimey Wibbly Wobbly

Doctor Who Hagazine




Where we want to go

Minimal recompiling daemon

Sub 20ms iteration cycles

Fix the language without breaking user’'s code
Phobos v2 (and v3, v4, ...)
“Header"-only Phobos

More attribute inference



How do we get there?

e Crawl before we can walk



The state of the struct

e We have a GC so we're memory safe (except when not)
e Onogc exists (except not trivial)

e Justified complaints about unfinished features



Unfinished Business

The preview switches

shared

std.experimental
What else?



Strategy for the previews

Check to see if druntime/phobos/projects compile

Check filed issues

Decide whether to transition

Print deprecation warnings unless -revert is used

e Switch the default: -revert can still be used



Remaining preview switches

e dip1008 (bug)

o fieldwise

e fixAliasThis

e rvalueRefParam (bug)
e nosharedaccess (bug)
e in

e inclusiveincontracts

e shortenedMethods



Unclear what the community means by “unfinished”
e Bugs prevent —-preview=nosharedaccess being made the default

e Focus on using shared directly is misguided

Library help needed with something similar to fearless

And/or structured concurrency in Phobos



fearless — the opposite of BYOM

e Shamelessly “inspired” by Rust's std: :sync: :Mutex
e Convention Driven Development doesn’t scale

e DIP1000 helps with limiting access to the shared state

10



fearless — the opposite of BYOM

struct Foo { int i; }

auto foo = gcExclusive!Foo(42);

{

int* oldIntPtr;

scope xfoo = foo.lock(Q);

xfoo.i = 1;

int* intPtr;

static assert(__traits(compiles, intPtr = &xfoo0.i));

static assert(!__traits(compiles, oldIntPtr = &xfoo.i));
}

11



fearless — the opposite of BYOM

void func(Tid tid) @safe {

receive(

(Exclusive!Foo* m) {
auto xfoo = m.lock;
xfoo.it++;

I

bE

12



std.experimental

e Doesn't seem to have worked as intended

checkedint merged months ago

code.dlang.org seems like a better alternative
std.sumtype validates this approach
Phobos on dub?

13



std.experimental.typecons

e Unlike allocator and logger, it's quite small

e The plan: go over it and move to typecons

14



std.experimental.logger

e | consulted with Robert over what needed finishing
e | looked at all the bugs that were open — no showstoppers

e Recently moved to std.logger

15



Open questions on std.experimental.allocator

“Default” go-to allocators

Synchronization setting global allocator state

Lifetimes of the allocators themselves. RC?

More examples of “classic” high-performance allocators in showcase

Relationship between allocators and the GC?

What is the “porcelain” of allocators?

16



Go-to allocators

e It can't be theAllocator / processAllocator

theAllocator = myAllocator;
{

auto vO = vector(l, 2);

theAllocator = otherAllocator;

17



Go-to allocators: solutions

Only allow setting the process allocator once

Only allow setting the thread allocator at thread creation

Only allow replacing the allocator if no memory was allocated

Only allow setting the allocator if the current one is the GC

18



Synchronization setting global allocator state

e Solution: don't

e Aliasing makes this worse

19



Showcase classic allocators

e What are the examples?

20



Allocators and the GC

e Conceptually the GC is an allocator

e But it has guarantees that no other allocator has

21



Allocator porcelain

Users shouldn’t be allocating memory themselves

Instead we should have library types to handle that:
e vector
e RC smart pointer
e Unique smart pointer

The focus, again, should be on high-level APls

Nobody should be calling malloc/free

22



Allocators: @nogc?

e A lot of GC resistance is a perception issue
e @nogc is important for that

e But @nogc lacking in the allocator interface

23



“Header" -only Phobos
Phobos v2
Editions

More attribute inference

And many more. ..

24



Header-only Phobos

e Problem: distributed binary not built with same flags as the user's
e Origin of the unittest hack (since removed)
e dub?

23



Phobos v2

Goals:

o Make breaking changes
e No changes to Phobos v1
e Share code between them

e Onogc

26



Making breaking changes that don’t break

Opt-in per module

Possible that we can’t change everything

Likely complicated compiler refactoring

27



More attribute inference

e In practice, most D code seems to be open-source
e If the source is available. . .infer?

e Not just a D problem: constexpr Foo getFoo() noexcept const;

28



The priority should be fixing bugs and finishing features

Only then should we look to expand

The focus should be in high-level usage

Help needed fixing bugs

29



Questions?

Slide intentionally left blank

30



