
Presentor: Mike Shah, Ph.D.
13:30-14:15, Tue, August, 2 2022
45 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 1

Ray Tracing in (Less than) One
Weekend with Dlang

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

2

Goal(s) for today

3

What You’re Going to Learn Today? (1/2)

● Today you’re going to learn about building a Ray
Tracer in the D Programming Language

○ The book to the right, written by Peter Shirley, has
helped get many folks get introduced and started in the
graphics industry.

Using DLang

4

What You’re Going to Learn Today? (2/2)

● To the D Language experts in the room, I don’t
think I have any ‘amazing’ DLang tricks to show
you.

○ However, I hope you will perhaps use this as inspiration
to try a short project in D using your expertise

○ Every time I build a Ray Tracer I learn something new!
○ Otherwise, sit back and remember why you love D in this

tour!
● For beginners (the audience for this talk) -- I

hope this will serve as an excellent project to
learn D

Using DLang

5

Why Ray Tracers?

● Fun to build--can be quite compact and short project--you can actually
finish the project!

○ (or you can make a career out of it!)
● A ray tracer is an excellent project when a student asks ‘what project

should I build to practice skills?’
○ I think they are a great project for also learning a new language

● My claim (and what I am going to show off) is that using the D
Programming Language, you can build a Ray Tracer in well under 24
hours

○ It will be a delightful experience and help showcase D Lang as a language for software
engineers.

6

Your Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training coming at courses.mshah.io 7

http://www.mshah.io
http://courses.mshah.io

For Folks Online...

● I’m admitting I’m
not a Dlang expert

○ (Please don’t ask me to do live template
metaprogramming examples during this talk :))

● The good news
though--if you can
walk through the ‘D
Basics’ guide you
can build a Ray
Tracer

8https://tour.dlang.org/

https://tour.dlang.org/

Code for the talk

● Located here:
https://github.com/MikeShah/Talks/tree/main/2022_dconf_London

9

https://github.com/MikeShah/Talks/tree/main/2022_dconf_London

Code for the talk

● There are some tags on the github repository,
roughly corresponding to the chapters in
Shirleys text

○ Note: I’ll start cleaning up the code more and more in
the later tags. :)

10

Abstract

Peter Shirley’s book ‘Ray Tracing in One Weekend’ has been a brilliant
introduction to implementing ray tracers for beginners. While you may not have
read the book, you may have seen the viral images of programmers all over the
world sharing images generated from their ray tracers on social media. While the
book is implemented in C++, I was up for the challenge to implement the ray tracer
in D. With the efficiency of the D language however, I set myself the challenge to
complete the task in less than 24 hours. In this talk I will describe my
experience, highlighting features of the D language that made this possible. I will
also discuss why D may be the right language to teach software engineering in a
university setting for this reason.

The abstract that you read and enticed
you to join me is here!

11

Ray Tracing
What does ‘ray tracing produce’

Image from http://www.realtimerendering.com/raytracinggems/rtg/index.html
12

http://www.realtimerendering.com/raytracinggems/rtg/index.html

https://graphics.pixar.com/library/RayTracingCars/paper.pdf
13

https://graphics.pixar.com/library/RayTracingCars/paper.pdf

https://www.polygon.com/e3/2019/6/10/18410733/ray-tracing-xbox-scarlett-ps5-amd-navi-nvidia-rtx

14

https://www.polygon.com/e3/2019/6/10/18410733/ray-tracing-xbox-scarlett-ps5-amd-navi-nvidia-rtx

15

https://developer.nvidia.com/rtx/ray-tracing
16

https://developer.nvidia.com/rtx/ray-tracing

Image from http://www.realtimerendering.com/raytracinggems/rtg/index.html

The Ray Tracing Algorithm
(At a high level)

17

http://www.realtimerendering.com/raytracinggems/rtg/index.html

The Ray Tracing Algorithm
(At a high level)

Image from http://www.realtimerendering.com/raytracinggems/rtg/index.html

Let’s understand what we’re going
to build at a high level, then we’ll
start putting together the program.

18

http://www.realtimerendering.com/raytracinggems/rtg/index.html

Ray Tracing

● Ray Tracing is sort of what it
sounds like.

● You are going to ‘cast’ a ray
from an origin in some
direction

○ And what we care about is where
that ‘ray’ hits.

○ The intersection of a ray with an
object is what gives us information
about how to color in our scene.

19(Note: We’re doing ‘backwards ray tracing today, as we are casting the ray from a camera, rather
than a light source)

Ray Tracing - Analogy

● The analogy is exactly like
pointing a laser pointer

○ Our laser pointer hits the closest
surface that it hits against

○ (The actual light particles may
bounce multiple times, but we’ll get
into that).

20

Ray Tracing Versus Rasterization Algorithm

● Now Ray Tracing
differs a bit from
Rasterization

○ Rasterization is
another technique
for drawing 3D
graphics scenes.

● Take a moment to
see the difference
between the two
ideas and the
generated images.

21

Building a Ray Tracer Code Examples
(C and Python)

A few code examples we can learn
from

22

Ray Tracing in C (For compiled language performance) (1/2)

● Here’s an example of a Ray Tracer
in C

○ (I didn’t write this one -- it is famously
on the back of a business card by
Andrew Kensler and there’s another by
Paul Heckbert in 1987)

Andrew Kensler’s card - https://fabiensanglard.net/postcard_pathtracer/

23

https://graphics.pixar.com/library/indexAuthorAndrew_Kensler.html
https://www.cs.cmu.edu/~ph/src/minray/minray.card.c
https://fabiensanglard.net/postcard_pathtracer/

Ray Tracers can be quite compact -- just a few core ideas to understand (1/2)

Andrew Kensler’s card - https://fabiensanglard.net/postcard_pathtracer/

24

https://fabiensanglard.net/postcard_pathtracer/

Ray Tracers can be quite compact -- just a few core ideas to understand (2/2)

Andrew Kensler’s card - https://fabiensanglard.net/postcard_pathtracer/

25

Let’s again try to figure out the
key components from a high level
(rather than the obfuscated
source code)

https://fabiensanglard.net/postcard_pathtracer/

Python Ray Tracer (1/6)

● Here’s an example of a Ray Tracer I
wrote in Python 3.

○ It was again from a workshop taught by
Peter Shirley (The ‘author of Ray
Tracing in One Weekend)

https://twitter.com/MichaelShah/status/1384621463018385415

26

https://raytracing.github.io/
https://raytracing.github.io/
https://twitter.com/MichaelShah/status/1384621463018385415

Python Ray Tracer (2/6)

● Structurally:
○ We have a few objects

https://twitter.com/MichaelShah/status/1384621463018385415

3 spheres, and 1 sphere on the ground

27

https://twitter.com/MichaelShah/status/1384621463018385415

Python Ray Tracer (3/6)

● Structurally:
○ We have a few objects
○ Each of these objects can be of a

different material

https://twitter.com/MichaelShah/status/1384621463018385415

Metal and another solid material (i.e. diffuse material)

28

https://twitter.com/MichaelShah/status/1384621463018385415

Python Ray Tracer (4/6)

● Structurally:
○ We have a few objects
○ Each of these objects can be of a

different material
○ We also have a camera viewing our

scene from some perspective

https://twitter.com/MichaelShah/status/1384621463018385415

We could have ‘one’ or more cameras

29

https://twitter.com/MichaelShah/status/1384621463018385415

Python Ray Tracer (5/6)

● Structurally:
○ We have a few objects
○ Each of these objects can be of a

different material
○ We also have a camera viewing our

scene from some perspective
○ We also have the canvas where we are

painting on as well!

https://twitter.com/MichaelShah/status/1384621463018385415

The ‘canvas’ which we are painting on

30

https://twitter.com/MichaelShah/status/1384621463018385415

Python Ray Tracer (6/6)

● Structurally:
○ We have a few objects
○ Each of these objects can be of a

different material
○ We also have a camera viewing our

scene from some perspective
○ We also have the canvas where we are

painting on as well!
○ And finally, we’re going to need some

math
■ (Just a little bit, but you’ll have to

remember a few things from your
high school geometry/algebra)

https://twitter.com/MichaelShah/status/1384621463018385415

This is all done with mathematics! Students love
graphics because they actually get to use nearly all
the math they have learned -- they see the beauty!

31

https://twitter.com/MichaelShah/status/1384621463018385415

Ray Tracer Algorithm Visualized (1/2)

● Now remember what we’re doing,
we’re casting a ‘ray’ through one
pixel at a time.

https://twitter.com/MichaelShah/status/1384621463018385415

32

https://twitter.com/MichaelShah/status/1384621463018385415

Ray Tracer Algorithm Visualized (2/2)

● Now remember what we’re doing,
we’re casting a ‘ray’ through one
pixel at a time.

● To the right I’ve visualized the
process (at a lower resolution)

https://twitter.com/MichaelShah/status/1384621463018385415

33

https://twitter.com/MichaelShah/status/1384621463018385415

Python Ray Tracer Code Sample (1/2)

(Look at a portion of the code here later if you like)

Example of a final product.
https://twitter.com/MichaelShah/status/1384621463018385415(This version was based off of Peter Shirley’s Ray Tracing in 40

minutes Google Colab project -- very quick way to learn!) 34

https://twitter.com/MichaelShah/status/1384621463018385415

Python Ray Tracer Code Sample (2/2)

(Look at a portion of the code here later if you like)

Example of a final product.
https://twitter.com/MichaelShah/status/1384621463018385415(This version was based off of Peter Shirley’s Ray Tracing in 40

minutes Google Colab project -- very quick way to learn!)

1. Iterate through each pixel one at a time
2. Cast a ray
3. Test if that ray hits something

35

https://twitter.com/MichaelShah/status/1384621463018385415

An Aside: Python Ray Tracer

● By altering our objects position, and
re-rendering, we capture motion
one frame after the other.

○ This is what we would do if we are
making a computer generated film.

○ Add another loop to the previous snippet
for ‘motion’ and you’re all set!

https://twitter.com/MichaelShah/status/1384621463018385415

36

https://twitter.com/MichaelShah/status/1384621463018385415

Coming from C++ and Python to!DLang

● So I’ve implemented Ray Tracers in C++ and then Python
○ Now it’s time to walk us through in Dlang
○ Now you know the main ingredients of a ray tracer, so you can follow along

● Dlang is a very productive language to program in
● Peter Shirley’s Ray Tracing in One Weekend is your full guide written in C++

○ But we can follow along with Dlang nicely!.

https://wiki.dlang.org/Coming_From 37

https://raytracing.github.io/
https://wiki.dlang.org/Coming_From

Let’s Begin our Journey Raytracing in D

38

The First Hour

Image Generation

● In order to start generating ‘pretty
pictures’ we first have to store
individual pixels to the screen

○ A pixel today means:
■ red, green, blue component at a

specific position.
■ Typically these range from 0-255

for each color component
■ (Some systems use 0.0 to 1.0)

● We’ll also need need an image
format to write out our canvas to
save to disk.

○ The text-based PPM Format usually
works quite well -- essentially raw data of
pixels color components

39
We are mapping our hardware to software -- that is actually pretty neat and a
fun way to approach software engineering

From Peter Shirley (C++ Snippet)
● The first goal is to just get

something to show up on screen.
● I think this is a great way to

approach the problem
○ Get something working
○ Then slowly iterate

40

From Peter Shirley (C++ Snippet) to D Code

(Recording yourself coding in one take was...fun:))

41

C++ to Dlang

https://docs.google.com/file/d/1_7nV8pms9MnCmzaXTCWbE87RxLt4lTdH/preview

Type Casts

42

● You might have caught I did
some type casting from C++
static_cast here.

○ This casting mechanism actually
becomes very important in Ray
Tracers

■ Ray Tracers are very prone
to overflow, or producing
NaN values

● (It’s not obvious now
though)

Adding Abstraction -
Our Canvas

43

Hours 2-4

The ‘canvas’ which we are painting on

A Canvas

● I need some way to write
and store pixel information
over time

○ Abstraction can be useful to
give us access to individual
pixels

○ So I’m going to write a ‘PPM’
class

○ DLang allows me to work in
multiple paradigms (functional,
procedural, and
object-oriented)

44https://tour.dlang.org/tour/en/basics/classes

https://tour.dlang.org/tour/en/basics/classes

A Canvas - PPM Class (1/6)

● Here’s a snapshot of the
important details when
building a class

45

...

A Canvas - PPM Class (2/6)

46

...

● Constructors
neatly named
‘this’

● No destructors
(garbage
collected by
default [more])

https://dlang.org/spec/garbage.html

A Canvas - PPM Class (3/6)

47

...

● Member variables
(Fields), and
individually I can
specify protection
level (private)
○ Otherwise public

by default, which
I believe is the
right choice [see
access control]

https://dlang.org/spec/class.html#access_control
https://dlang.org/spec/class.html#access_control

A Canvas - PPM Class (4/6)

48

...

● One more thing to
point out about
variables
○ They have

defaults!
○ Can even query

their properties
(i.e. .init, .min,
.max, see more)

https://dlang.org/spec/property.html

A Canvas - PPM Class (5/6)

49

...

● I can pack
everything away into
a nice ‘module’
○ Makes

compilation and
worrying about
‘header’ files less
of a problem.

A Canvas - PPM Class (6/6)

50

...

● Many facilities for
working with files
(even .json) in D’s
standard library (The
standard library is
called Phobos) as well.
○ File utilities will be

very familiar to C,
C++, Python, etc.
programmers

[https://dlang.org/phobos/index.html]

https://dlang.org/phobos/index.html

Drawing spheres and
rays on our canvas

51

Hours 4-10

We want to draw some shapes

Drawing Shapes (Requires Math)

52

● So in order to draw, we have to
represent a circle (equation to the
right)

● Our goal is to determine if a ray
intersects this circle

○ If a ray crosses through 1 (or 2 times)
then we show some color

○ If it does not, then the ray continues on
its journey to see if it intersects with
something else

https://raytracing.github.io/books/RayTracingInOneWeekend.html#addingasphere

https://raytracing.github.io/books/RayTracingInOneWeekend.html#addingasphere

A Ray Class (1/2)

53

● Again, we’re going to need some
sort of abstraction for our ‘Ray
Class’

○ A Ray by definition has:
■ an origin (where we are holding

our laser pointer)
■ a direction (where the ray

extends out)

A Ray Class (2/2)

54

● Again, we’re going to need some
sort of abstraction for our ‘Ray
Class’

○ A Ray by definition has:
■ an origin (where we are holding

our laser pointer)
■ a direction (where the ray

extends out)

The direction itself can be
represented by a 3D-vector.

Vec3 Class

● In its simplest form, a 3D vector
stores 3 doubles.

○ See the example to the right
● (Note: DLang makes

function/class/interface templates
easy to implement -- see lower
code listing)

55

https://tour.dlang.org/tour/en/basics/templates

Vec3/Point3/Color Class

● Vec3 will be used to represent
things like point3, rgb, etc. in
graphics programming.

○ DLang supports ‘alias’ as an easy way
to provide some context. [see alias]

○ I find this extremely important for library
writing

■ (Although, the non-expert in me
wants to see if the alias can be
enforced more strongly, maybe in
a precondition contract -- to be
returned to!)

56

https://dlang.org/library/std/meta/alias.html
https://dlang.org/spec/contracts.html

Vec3 and Unit Test

● One of the huge wins
(and this saved me
many times) is unittest
in DLang

○ I followed test driven
development for the
Vec3 library

○ This Vec3 library has to
work so it is critical I
have confidence it
worked.

57

Vec3 and Unit Test - Bug Caught (1/2)

● More than one time I found a
‘divide by 0’ error that I was
not checking for.

○ You can see the amendment
on the right I made to check for
this.

58

Vec3 and Unit Test - Bug Caught (1/2)

● More than one time I found a
‘divide by 0’ error that I was
not checking for.

○ You can see the amendment
on the right I made to check for
this.

59

Vec3 and Unit Test - Bug Caught (2/2)

● Bug catching also led to
more helper functions being
created, and more unit tests
being written.

○ (And evening finding more
properties like ‘epsilon built in!)

○ Working in DLang is working in
a software engineering
language -- I really enjoy not
having to fight the language or
rely on third-party libraries for
this.

60

Vec3 Math Class - Operator Overloading

● Operator overloading I found overall
pleasant enough to implement.

○ A Vec3 class or a Matrix4x4 would be
examples in graphics of classes worth
implementing operator overloading.

61

Vec3 Math Class - Leveraging Uniform Function Call Syntax (UFCS)

● The last thing I’ll say about Vec3, is that very often I am going to want to
perform multiple operations on a Vec3

○ (e.g. Getting the direction of the vector and then normalizing it)
● Uniform Function Call Syntax (UFCS) [link to tour] makes this beautiful, and

just helps with DLang being a very clean language

62

https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs

Vec3 And Drawing Spheres

● Finally, once Vec3 is properly
implemented, I can draw a sphere.

○ Note:
■ The blueish colors are from how I’m

coloring the sphere using its
normals (imagine the normals as
sticking out like a porcupine --
perpendicular to each face of the
sphere, we encode the direction of
the vector normal into the color of
the sphere.)

63

Drawing Better
Spheres

64

Hours ~11-13

Something is not quite right--Maybe you’ll notice if
you have 20/20 vision

Anti-aliasing

● In graphics we can end up with
‘noisy’ edges.
○ Observe very closely the ‘jaggies’

and how we don’t see a perfectly
smooth sphere.

● To fix this, we essentially ‘sample
randomly’ neighboring pixels

○ (In practice, this means shooting multiple
rays per pixel to accumulate the final color)

65

DLang has std.random to help!

● I am able to leverage std.random
in this case [documentation link]

○ A variety of random functions and
distributions exist that are built-in,
which is wonderful!

66

https://dlang.org/phobos/std_random.html

DLang has std.random to help!

● Note on my code on the right,
DLang supports operator
overloading,

○ I can write a few helpful functions to
generate a single random value, or
value between a range.

○ (Operator overloading not available in
C for example)

67

Left (Improved using antialiasing) | Right (hard edges)

68

Handling Multiple
Objects

69

Hours 14-18 (very roughly,
maybe?)

One small sphere on top of a really big sphere

Rendering and Managing Multiple Shapes (1/2)

● We’re now ready to start rendering
multiple spheres now that we’re
confident one sphere will work.

● The next step is to build a
‘container’ to hold our objects.

○ Or do we need to do anything?
● D’s built-in data structures give us

exactly what we want--no extra
work!

○ Hittable[] is a dynamic array that we
can append new objects to at run-time.

○ (Otherwise, many other containers in
https://dlang.org/phobos/ are available).

70

https://dlang.org/phobos/

Rendering and Managing Multiple Shapes (2/2)

● We’ll also have to think a
little bit about if we want to
handle other shapes

○ i.e. not just spheres.
● Dlang supports interfaces,

which allow us to derive a
class from common
interface, where we must
implement the member
functions of the interface.

71

interface Hittable{
Hit(...);

}

class Sphere : Hittable{
/* ... */

}

https://dlang.org/spec/interface.html

Grand Finale and
Final Notes

72

Hours 19-24 (To be honest, I lost
count, but it was close to 2 full

work day sittings)

Utilizing different materials

Scaling

● Our goal is to start getting
something more interesting

○ More objects
○ More colors
○ Maybe even different materials!

73

Multiple Materials

● I will use the same strategy as I did
for handling multiple objects

○ 1 common interface that each derived
class must implement.

○ This will allow me to keep a relatively
flat inheritance hierarchy, and also
make sure I implement all needed
member functions.

74

interface Material{
scatter();

}

class Metal : Material{
/* ... */

}

class Color : Material{
/* ... */

}

A Few Software
Engineering Things

75

Approaching the end
The next weekend...

The final product!

A Few Software Engineering Things

76

Performance

● Debug Build of Ray Tracer
(Top)

○ Ouch!
■ 20 minutes and 31

seconds!
○ Did I mention ray tracing

can be expensive?
● Release Build (Bottom) of

Ray Tracer a bit faster at
14 minutes 19 seconds

77

Performance - Parallelism

● Good news, DLang has
parallelism built-in.

○ (And SIMD Vector Extensions)
● Ray Tracing is something that

is massively parallel, so this is
worth reporting on at a later
date, maybe a future talk?

○ Also, I will do more with
-profile=gc in the future

● (Pssst, the slow speed is also
a major data structure
problem-- bounding volume
hierarchy will also improve
sparse scenes significantly)

78

https://tour.dlang.org/tour/en/multithreading/std-parallelism

https://dlang.org/spec/simd.html
https://tour.dlang.org/tour/en/multithreading/std-parallelism

Debugging (1/2)

● Spot the bug!

79

Debugging (2/2)

● Spot the bug!
● D works wonderfully with GDB on my linux machine for catching these things.

○ (This was using the DMD compiler today. Perhaps GCC integratess even better?)

80

And More!

● I did not make heavy use of code coverage, but it is another nice feature in
dmd

○ https://dlang.org/articles/code_coverage.html
● My build system was slowly hacked together into two scripts to run unit tests

and then the build.
○ sh test.sh && sh ./build.sh
○ In reality, I will use dub if I introduce any additional dependencies.

■ Having a package manager is a big deal, and a very good thing in my opinion!
● Overall, it is clear to me that years of software experience have gone into

DLang, and it makes it a very fun language to build real software with!

81

https://dlang.org/articles/code_coverage.html
https://code.dlang.org/

Resources for More on Ray Tracing

● Ray Tracing
○ Ray Tracing in One Weekend Series (There are 3 free books)

■ https://raytracing.github.io/
○ Disney's Practical Guide to Path Tracing (Video: 9 minutes)
○ Ray Tracing Essentials [Part 1 - Part 7]

■ https://developer.nvidia.com/blog/ray-tracing-essentials-part-1-basics-of-ray-tracing/
○ Ray Tracing Course from SIGGRAPH

■ (class 1 link) https://www.youtube.com/watch?v=3xMeKal2-Ws
● Dlang

○ Ali Çehreli
■ Programming in D (free online and paperback book)

○ DLang Tour
■ https://tour.dlang.org/

82

https://raytracing.github.io/
https://www.youtube.com/watch?v=frLwRLS_ZR0
https://developer.nvidia.com/blog/ray-tracing-essentials-part-1-basics-of-ray-tracing/
https://www.youtube.com/watch?v=3xMeKal2-Ws
https://ddili.org/ders/d.en/index.html
https://tour.dlang.org/

Resources for More on Ray Tracing

● Ray Tracing
○ Ray Tracing in One Weekend Series (There are 3 free books)

■ https://raytracing.github.io/
○ Disney's Practical Guide to Path Tracing (Video: 9 minutes)
○ Ray Tracing Essentials [Part 1 - Part 7]

■ https://developer.nvidia.com/blog/ray-tracing-essentials-part-1-basics-of-ray-tracing/
○ Ray Tracing Course from SIGGRAPH

■ (class 1 link) https://www.youtube.com/watch?v=3xMeKal2-Ws
● Dlang

○ Ali Çehreli
■ Programming in D (free online and paperback book)

○ DLang Tour
■ https://tour.dlang.org/

83

This one in
particular is
a great
resource!

https://raytracing.github.io/
https://www.youtube.com/watch?v=frLwRLS_ZR0
https://developer.nvidia.com/blog/ray-tracing-essentials-part-1-basics-of-ray-tracing/
https://www.youtube.com/watch?v=3xMeKal2-Ws
https://ddili.org/ders/d.en/index.html
https://tour.dlang.org/

Thanks Ali!

● I’m not sure Ali is
going to remember
gifting me a copy of
his book at his
“Competitive
Advantage with D”
Meeting C++ 2017 talk

○ https://youtu.be/vYEK
EIpM2zo?t=1614 (see
the moment!)

● But here you are, and
thank you for being
generous!s!

84

https://youtu.be/vYEKEIpM2zo?t=1614
https://youtu.be/vYEKEIpM2zo?t=1614

Summary

● In summary, I hope you have enjoyed this journey
learning or refreshing on why DLang is a wonderful
language to work in.
○ Building a Ray Tracer is an excellent project to exercise

your skills on in the language.
● Your homework is to now go build a Ray Tracer

and then post on Twitter :)
○ Tag @Peter_shirley
○ Use the #dlang
○ (And optionally tag me or this talk if it helped inspire you)

85

Bonus Content

86

DLang - YouTube Playlist

● For fun announcement
○ I’ve started a brand new series on

YouTube on learning DLang.
○ This will be a long running series on

learning the DLang.
● https://www.youtube.com/watch?

v=HS7X9ERdjM4&list=PLvv0Sc
Y6vfd9Fso-3cB4CGnSlW0E4btJ
V&index=1

○ (Series starts this August, maybe
after this talk is broadcast again)

87

https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1
https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1
https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1
https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1

One more image ...
(Do you see the hidden easter egg?)

88

89

Presentor: Mike Shah, Ph.D.
13:30-14:15, Tue, August, 2 2022
45 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 90

Ray Tracing in (Less than) One
Weekend with Dlang

Thank you!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Bloopers

91

92

93

Unused

94

Outline
• Brief Introduction to what Ray Tracers are and Peter Shirley's Book

◦ Will show my C++ and Python Ray Tracers previously implemented

• Will through creating an image class

◦ Highlight easy file operations and string parsing in Dlang versus
C++

• Walk through building a vec3 class

◦ Highlighting operator overloading in Dlang (contrasting also with
Python)

◦ Will also show how integrating unit tests within vec3 class built
confidence in code.

• Walk through creating a sphere and background.

◦ Will highlight a few usages of std.algorithm

• Walk through a few more advanced features (providing an
overview) of Ray tracers:

Antialiasing, and materials

• Walk through adding a camera class and scene class to
organize the project

◦ Will show how I used 'ddoc' to document as I wrote code to
document these features.

• Will show an example scene at the end

◦ But one more trick, will show how using std.concurrency
(and/or) std.parallelism I could trivially improve performance

• Conclusion and final thoughts

◦ Why I'm considering teaching software engineering courses
in Dlang based on the features presented.

95

Useful resources

● https://wiki.dlang.org/Programming_in_D_for_C%2B%2B_Programmers
● https://dlang.org/articles/cpptod.html
● https://p0nce.github.io/d-idioms/#How-does-D-improve-on-C++17?
● D Style Guide

○ https://dlang.org/dstyle.html

96

https://wiki.dlang.org/Programming_in_D_for_C%2B%2B_Programmers
https://dlang.org/articles/cpptod.html
https://p0nce.github.io/d-idioms/#How-does-D-improve-on-C++17
https://dlang.org/dstyle.html

Vec3 Math Class - memoize

● Maybe talk about how I tried to memoize vec3 and then profile the
performance.

97

Maybe squeeze in ‘static if’ for flipping an image

98

