
Max Haughton

Language models, D, and so on



Survey

• Do you (consciously) use some kind of “AI”?


• Pay for it? Have an API key?



Some terms

• LLM - large language model, big blob of maths to predict what comes next in 
a sequence.


• Somewhere between a USB stick and a hard drives worth of numbers.


• Talk isn’t about their design, rather what can we get from them



Framing – what do we care about?

• Are we AI researchers? I’m not


• Does it matter if they can actually think or not? Compression enough to be 
useful?


• (Does that question even make sense)



Maybe not for us?

• Nice for programmers but transformative for non-programmers.


• I got this wrong when I proposed this talk in its original form


• The most interesting uses don’t seem to fit cleanly into traditional 
“programmer” dominated jobs.


• Obviously popular with young people doing/cheating on their schoolwork



Gartner Hype or just school holidays?

Supposed hype cycle

Google trend



What do we want, what can we do

• Focus on things we might integrate into a program rather than what we might 
interact with e.g. not solely helping us write code.


• Lots of difficult tasks that are *almost* very possible.



Models we can use

• OpenAI - GPT3, GPT3.5, GPT4 (The famous ones)


• Open source models – still a bit crap. Good at talking (this is not useless), not 
so much at tasks.


• CodeLlama recently released, still takes a lot of local computing power to get 
anywhere near something fun.



Specific example:
C preprocessor macros

• Perpetual issue with tools - enums are easy, weird macros are not.


• GPT4 gets very close, not quite enough to trust to run in (say) a build system.



It (GPT4) gets very close

• Knows D better than you might expect, but needs help.


• Sometimes perfect, sometimes weirdly complicated.


• Requires feedback – ideally human, but compiler error messages are usually 
good enough. With feedback, generates a sensible string mixin



What to do?

• Model output will improve, could give up and wait.


• Maybe dstep/dpp etc. process should be more interactive


• Subtly required anyway because this API is very much not free.


• Driverless cars – you could make the car better or change the road network.



Suppose you do have a model to run locally

• `import torch` takes 1s on my laptop.


• llama.cpp vibe shift: Extremely complicated big-tech-approach python stacks 
are replaced by a simple C library that covers most models people are 
interested in (llama, llama derivatives)


• Easy to access via D’s C/C++ interop.


• Simple enough - bindings already exist, ImportC works in theory except for 
fp16 detection.



New dog, old tricks

• Recent trends in AI, or rather executing models once trained, start to look a 
lot like a compiler.


• Data flowing through a graph, sound familiar?


• Compiler optimisations in pytorch


• I think D can do extremely well here.



• Types of problems now coming up (going fast, keep the problem small, nice 
code etc.) are things D is good at.


• Some prior art, libraries, these can be learnt from.


• Next DConf online perhaps.


