Language models, D, and so on

Max Haughton

Survey

* Do you (consciously) use some kind of “Al”?

* Pay for it? Have an API key?
i

—

Chai GPT (Genuinely Pure Tea)
tnhanced with Al (Adrak & ilaichi)

| gChalGPT

Some terms

 LLM - large language model, big blob of maths to predict what comes next Iin
a seguence.

e Somewhere between a USB stick and a hard drives worth of numbers.

* Talk isn’t about their design, rather what can we get from them

Framing — what do we care about?

e Are we Al researchers? I’'m not

* Does it matter if they can actually think or not”? Compression enough to be
useful?

e (Does that question even make sense)

Maybe not for us?

* Nice for programmers but transformative for non-programmers.
* | got this wrong when | proposed this talk in its original form

 The most interesting uses don’t seem to fit cleanly into traditional
“programmer” dominated jobs.

* Obviously popular with young people doing/ereatirg on their schoolwork

Gartner Hype or just school holidays?

VISIBILITY

Peak of Inflate

Supposed hype cycle

Trough o

Technology Trigger

What do we want, what can we do

* Focus on things we might integrate into a program rather than what we might
iInteract with e.g. not solely helping us write code.

» |ots of difficult tasks that are *almost™ very possible.

Models we can use

 OpenAl - GPT3, GPT3.5, GPT4 (The famous ones)

* Open source models — still a bit crap. Good at talking (this is not useless), not
sO much at tasks.

 Codellama recently released, still takes a lot of local computing power to get
anywhere near something fun.

Specific example:

C preprocessor macros

* Perpetual issue with tools - enums are easy, weird macros are not.

» GPT4 gets very close, not quite enough to trust to run in (say) a build system.

#define SET BY NAME(obj, field, set) obj.field = set

struct X {

int var;

}s:

O 0 J & U & W N =

void doesSomething(X& hello) I
SET _BY NAME(hello, var, 1);
)

=
o

It (GPT4) gets very close

 Knows D better than you might expect, but needs help.
 Sometimes perfect, sometimes weirdly complicated.

 Requires feedback — ideally human, but compiler error messages are usually
good enough. With feedback, generates a sensible string mixin

static 1f (hasMember! (T, field)) {
obj.tupleof[AliasSeq!(traits(allMembers, T)).find!(x => x

== field)] = set;

} else {
static assert(0, T.stringof ~ " does not have a member named

-~ field);
}

What to do?

 Model output will improve, could give up and walit.
 Maybe dstep/dpp etc. process should be more interactive
» Subtly required anyway because this APl is very much not free.

* Driverless cars — you could make the car better or change the road network.

Suppose you do have a model to run locally

e import torch takes 1s on my laptop.

* |lama.cpp vibe shift: Extremely complicated big-tech-approach python stacks
are replaced by a simple C library that covers most models people are
interested in (llama, llama derivatives)

 Easy to access via D’s C/C++ interop.

 Simple enough - bindings already exist, ImportC works in theory except for
fp16 detection.

New dog, old tricks

 Recent trends in Al, or rather executing models once trained, start to look a
lot like a compiler.

* Data flowing through a graph, sound familiar?

/ KK

» Compiler optimisations in pytorch |EEEEEEEEEEEEEEEE

x This transforms looks for specific operators (denoted by allowed_ops_),
. * and removes unnecessary repetition of that operator.
* | think D can do extremely well here
N f X1r W re.
* Consider some operator of X, that reads from blob b_ written to by W.
* X_a and X_b read the output of X. However, another operator Y, 1is the same

<« type as X, has the same arguments as X, and reads from the same input b_,

< Then, we can elimlnate the common subexpressions X and Y, and merge them to

x Z, where X_a, X b, Y_a, Y. b, and Y_c all read from Z.

"
*
*
*
"
"
*
*x written to by W. It's output 1s the same as X. Y_a, Y_b, and Y_c read from Y.
"
*
"
"
%k
>

* TODO(benz): Fix the error to not match nodes that write to external output.
> 3 /
class TORCH_API CommonSubexpressionEliminationTransform : public Transform {

* Jypes of problems now coming up (going fast, keep the problem small, nice
code etc.) are things D is good at.

e Some prior art, libraries, these can be learnt from.

 Next DConf online perhaps.

