
You’re writing D wrong

An old man yells his pet peeves at the clouds

Átila Neves, Ph.D.

DConf 2023

1

Get off my lawn

• Warning: opinions incoming.

• “An expert is someone who’s made every mistake possible”

• Rule #0: always use your head.

2

Refactoring is key

• Code that doesn’t change is dead.

• Nothing matters in a tiny script.

3

The moral of the story

• The API is important.

• The implementation is not. *

* Unless it is:

• Performance.

• Bugs.

• Ease of working with.

• . . .

4

Stop writing classes*

• null: the billion dollar mistake.

• Reference semantics are terrible (action at a distance)

• What we want: value semantics.

• What we don’t want: performance penalties.

• C++: std::shared ptr<const T>

• Don’t pay for what you don’t need.

• Not even needed: https://github.com/atilaneves/tardy

• Look ma, no class! new MyStruct

* Unless you actually need them

5

private

• Treat your implementation like your underwear drawer.

• API design needs to be explicit, not implicit.

• If your clients can, they will.

• Don’t get married to randoms off the street.

• If a private function is deleted, does it make a sound?

6

Don’t test private functions*

• Implementation details don’t matter.

• If the behaviour can’t be tested publicly. . .

* Or be willing to delete the tests

7

Think carefully about dependencies

• Think about who imports whom.

• Avoid cyclic dependencies.

• Organise code into D packages where it makes sense.

• dpp has a package module just for dependencies:

• source/dpp/translation/type/package.d

• source/dpp/translation/enum .d

• source/dpp/translation/macro .d

• . . .

• D packages are like OOP class hiearchies.

8

Use local imports / imported

• Why? Refactoring, refactoring, refactoring.

• (also because of dependencies)

• What about tooling?

• Functions with too many imports stink.

9

Stop caring about endianness

• Rob Pike’s “The byte order fallacy”

• Mixed-endian machines exist

// How to decode a 32-bit integer encoded in big-endian:

int i = (data[0] << 24) | (data[1] << 16) |

(data[2] << 8) | (data[3] << 0);

10

Stop writing auto

• But don’t explicitly write types either.

• Options: const or scope.

• What would be great:

InputRange!(const int) rng = algo();

11

unittests should be @safe pure

• And objects should be const in them.

• And probably CTFE runnable (linker? pfft)

• Not always possible or desirable.

• Test taxonomy is boring. They should be:

• Fast.

• Consistent.

• Flexible (i.e. not brittle).

• Capture the true behaviour of the code.

• Don’t write tests that depend on the network.

12

non-pure unittest example

with(immutable ReggaeSandbox("dub")) {

runReggae("-b", "make");

make(["VERBOSE=1"]).shouldExecuteOk.shouldContain("-debug -g");

execute(["touch", inSandboxPath("dub.selections.json")]);

make.shouldFailToExecute.shouldContain("reggae");

}

13

Don’t write for loops

• Ranges are good. Use ranges.

• 99%* of for loops are map/filter/fold.

• Parallelism makes this worse:

foreach(foo; foos.parallel)

bars ~= foo;

* Made-up number.

14

main should be mostly empty

Nearly every one of my non-test main functions:

int main(string[] args) {

try {

run(args);

return 0;

} catch(Exception e) {

import std.stdio: stderr;

stderr.writeln("Error: ", e.msg);

return 1;

}

}

15

Don’t write complicated CI configurations

• . . . Unless you can spin up a CI container.

• Otherwise keep it simple so it can be done locally.

16

scope(exit) is for one-time use

• More than once? Write a struct with a destructor.

// intended usage:

auto handle = silly_c_api_setup(options);

scope(exit) silly_c_api_shutdown(handle);

// with a type:

with(ScopedThingie(args)) {

...

}

17

Don’t write empty parens for function calls

. . . Because of refactoring

struct InfiniteRange {

enum empty = false;

}

18

Don’t write getters. Definitely don’t write setters.

• Don’t be nosy.

• Tell, don’t ask.

writeln("x: ", obj.x, " y: ", obj.y); // no

struct Obj {

void write() @safe scope const {

writeln("x: ", x, " y: ", y); // yes

}

}

19

Don’t use shared

• Use immutable instead.

• Or use a library.

20

Conclusion

• The API is important.

• The implementation is not.

• Refactoring is key.

21

Questions?

Slide intentionally left blank

22

