You're writing D wrong

An old man yells his pet peeves at the clouds

Atila Neves, Ph.D.
DConf 2023

Get off my lawn

e Warning: opinions incoming.
e “An expert is someone who's made every mistake possible”

e Rule #0: always use your head.

Refactoring is key

e Code that doesn’t change is dead.

e Nothing matters in a tiny script.

The moral of the story

e The API is important.

e The implementation is not. *

* Unless it is:

e Performance.
e Bugs.
e Ease of working with.

Stop writing classes™

e null: the billion dollar mistake.
e Reference semantics are terrible (action at a distance)

e What we want: value semantics.

What we don't want: performance penalties.

e C++: std::shared ptr<const T>

Don't pay for what you don't need.

Not even needed: https://github.com/atilaneves/tardy

Look ma, no class! new MyStruct

* Unless you actually need them

Treat your implementation like your underwear drawer.

API design needs to be explicit, not implicit.

If your clients can, they will.

Don’t get married to randoms off the street.

If a private function is deleted, does it make a sound?

Don’t test private functions*

e Implementation details don’t matter.

e |f the behaviour can't be tested publicly. ..

* Or be willing to delete the tests

Think carefully about dependencies

Think about who imports whom.

Avoid cyclic dependencies.

e Organise code into D packages where it makes sense.

dpp has a package module just for dependencies:

e source/dpp/translation/type/package.d
e source/dpp/translation/enum_.d
e source/dpp/translation/macro_.d

D packages are like OOP class hiearchies.

Use local imports / imported

Why? Refactoring, refactoring, refactoring.

(also because of dependencies)

What about tooling?

Functions with too many imports stink.

Stop caring about endianness

e Rob Pike's “The byte order fallacy”

e Mixed-endian machines exist

// How to decode a 32-bit integer encoded in big-endian:
int i = (data[0] << 24) | (data[1] << 16) |
(data[2] << 8) | (datal[3] << 0);

10

Stop writing auto

e But don't explicitly write types either.
e Options: const or scope

e What would be great:

InputRange! (const int) rng = algo();

11

unittests should be @safe pure

And objects should be const in them.
And probably CTFE runnable (linker? pfft)

Not always possible or desirable.

Test taxonomy is boring. They should be:

e Fast.

e Consistent.

e Flexible (i.e. not brittle).

e Capture the true behaviour of the code.

e Don't write tests that depend on the network.

12

non-pure unittest example

with(immutable ReggaeSandbox("dub")) {
runReggae("-b", "make");
make (["VERBOSE=1"]) . shouldExecuteOk.shouldContain("-debug -g") ;
execute(["touch", inSandboxPath("dub.selections.json")]);

make.shouldFailToExecute.shouldContain("reggae") ;

13

Don’t write for loops

e Ranges are good. Use ranges.
e 99%* of for loops are map/filter/fold.

e Parallelism makes this worse:

foreach(foo; foos.parallel)

bars "= foo;

* Made-up number.

14

main should be mostly empty

Nearly every one of my non-test main functions:

int main(stringl[] args) {
try {
run(args) ;
return O;
} catch(Exception e) {
import std.stdio: stderr;
stderr.writeln("Error: ", e.msg);

return 1;

15

Don’t write complicated Cl configurations

e ...Unless you can spin up a Cl container.

e Otherwise keep it simple so it can be done locally.

16

scope(exit) is for one-time use

e More than once? Write a struct with a destructor.

// intended usage:
auto handle = silly_c_api_setup(options);
scope(exit) silly_c_api_shutdown(handle);

// with a type:
with(ScopedThingie(args)) {

17

Don’t write empty parens for function calls

... Because of refactoring

struct InfiniteRange {

enum empty = false;

18

Don’t write getters. Definitely don’t write setters.

e Don’t be nosy.

e Tell, don't ask

writeln("x: ", obj.x, " y: ", obj.y); // mo
struct 0Obj {
void write() @safe scope const {

writeln("x: ", x, " y: ", y); // yes

19

Don’t use shared

e Use immutable instead.

e Or use a library.

20

Conclusion

e The API is important.
e The implementation is not.

e Refactoring is key.

21

Questions?

Slide intentionally left blank

22

