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Why build a kernel?

It is fun and educational to build a kernel.

| am a researcher, and want to experiment with new ideas and architectures for

operating system design. Having a small kernel to experiment with is helpful.

Cheap single-board computers (SBCs) are widely available and fun to play with!

Applications
A

¥
Kernel
4

4

T >

u

2
Memory

12
Devices

2/34



Multiplix: how to write a small kernel in D

Multiplix is a small Unix-like kernel | have been developing over the last 10 months.

e Around 6,500 lines of D.
e Supports multiple architectures (ARMv8, RISC-V) and boards (Raspberry Pi,
VisionFive).

e |t will serve as the foundation for future projects | am interested in.

3/34



Multiplix: how to write a small kernel in D

Multiplix is a small Unix-like kernel | have been developing over the last 10 months.

e Around 6,500 lines of D.
e Supports multiple architectures (ARMv8, RISC-V) and boards (Raspberry Pi,

VisionFive).
e |t will serve as the foundation for future projects | am interested in.
In this talk:
Part 1: Why | chose D and how to get started with it for bare-metal programming.
Part 2: My experiences working on Multiplix.

Part 3: Future directions and what | intend to build on top of Multiplix next.
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Why D for bare-metal programming?

A crowded market of systems languages: D, C, C+-+, Rust, Zig, Hare, and more...

Familiar: converting and interfacing with existing C code is easy.
Ergonomic: particularly compared to Rust for common structures
like doubly linked lists and for unsafe components.

Some safety: some safety features such as bounds-checked slices
and stronger type safety compared to C.

Mature: multiple compiler implementations and a stable core set of

features.

Easy to get started with, and fun to use!
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Tutorial: writing a bare-metal Raspberry Pi program in D

Software: QEMU, and a bare-metal toolchain with
LDC or GDC.

Hardware: all you need is a Raspberry Pi, micro SD
card, and a serial connector.

See https://zyedidia.github.io/blog/posts/1-d-baremetal/ for a writeup (targeting QEMU RISC-V).

| have pre-built toolchains available at https://github.com/zyedidia/build-gdc 5/34
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What is bare-metal programming?

Normally your program runs in a “hosted” environment. OS provides:

e Display capabilities.

Ability to send and receive data over ports.

A file system.

Multiple processes.
When running bare-metal, hardware is the only environment:

e The hardware will begin executing your program at a pre-defined address.

e Hardware devices (display, output ports, disk) can be controlled by
reading/writing a special region of memory.
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Raspberry Pi setup

1. GPU loads the firmware binary from the SD card and

places it at 0x0. (for the ARM) N
2. GPU loads the kernel binary from the SD card and L et
places it at 0x80000. Up| e perpherais
3. CPU begins execution at 0x0. SoRAM e
. . . WMARM) 0x0_4000_000€
4. Firmware sets up various control registers, and then - B
jumps to 0x80000. >
SDRAM
5. Our code begins running! (ORISR oo _co0s_ccox

ARM view of the Address Map
in “Low Peripheral” mode
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Quick overview of ARMv8

The CPU ultimately runs machine code (e.g., ARM):

31 general-purpose registers (x0-x30).

Stack pointer (sp) and zero register (xzr).
ELO Application

Load-store architecture: 1dr xN, [xM], and

str xN, [xM]. EL1 e

Four exception levels: ELO (user), EL1
(kernel), EL2 (hypervisor), EL3 (firmware).

EL2 Hypervisor

Decreasing privilege
Increasing privilege

=
Jill -

EL3 Firmware / Secure Monitor
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Setting up a minimal bare-metal environment

What does D code need?

1. A valid stack pointer. -text
2. An initialized Block Start Segment (BSS).
.rodata
Link _start at 0x80000.
start.s: .
.
.section ".text.boot" &
.globl _start
_start: .data
ldr x1, =_start // stack below _start
mov sp, x1
ldr x0, =_bss_start // zero the BSS
ldr x1l, =_bss_end 'bss
cmpr: cmp x0, x1
bcc loop
bl kmain . .
halt: b halt main.d:
loop: str wzr, [x0], 4 extern (C) void kmain() {}
b cmpr
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Using D with a custom runtime

D compilers require the presence of object.d, which contains definitions that are
always available. Usually it contains the core definitions for the D runtime.

Make your own empty object.d:

module object;

As the project expands, you can add more features:

Basic types (string, size_t, ...).

Support for assertions (_assert()).

Support for builtins (atomics, volatile load/store, .. .)
Support for array operations (_d_array_slice_copy(...), ...)

Whatever features of the D runtime you want to include.
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Generating output

We can transmit bytes over the serial connector by using the Pi's UART device.

The datasheet tells us how to configure the UART and how to transmit/receive data.

0x7e215000.

Offset Name Description

0x00 AUX_IRQ Auxiliary Interrupt status
0x04 AUX_ENABLES Auxiliary enables

0x40 AUX_MU_IO_REG Mini UART I/0 Data

Datasheet: https://www.scs.stanford.edu/~zyedidia/docs/rpi/bcm2711.pdf
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Generating output

We can transmit bytes over the serial connector by using the Pi's UART device.

The datasheet tells us how to configure the UART and how to transmit/receive data.

Bits Name Description Type Reset

318 Reserved. = = =

7:0 LS 8 bits Baudrate | Access to the LS 8 bits of the 16-bit baudrate register. RW 0x00
read/write, (Only if bit 7 of the line control register (DLAB bit) is set)
DLAB=1

7:0 Transmit data Data written is put in the transmit FIFO (Provided itisnot | WO 0x00

write, DLAB=0 full)
(Only if bit 7 of the line control register (DLAB bit) is clear)

7:0 Receive data read, | Data read is taken from the receive FIFO (Provided it is not | RO 0x00
DLAB=0 empty)
(Only if bit 7 of the line control register (DLAB bit) is clear)
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Generating output

We can transmit bytes over the serial connector by using the Pi's UART device.

The datasheet tells us how to configure the UART and how to transmit/receive data.

extern (C) void kmain() {
foreach (b; "hello!") {
volatileStore (cast (ubytex) 0x7e215040, b);

Next step: wrap this into a device driver with a better interface.
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The bare-metal development experience

1. Use QEMU for prototyping and quick testing.
2. Use a UART bootloader to quickly send new programs to the Pi.

Host sends payload over UART

Bootloader sends pings
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What is Multiplix?

A simple Unix-like kernel | have been developing for several months.

e Supports ARMv8 and RISC-V 64, and runs on real hardware: Raspberry Pi 3/4,
VisionFive 1/2.

Preemptive processes.

Simple set of system calls for user processes.

Unix v6 file system.

Partial multicore support (in-progress).

e Written in D! Can be built with LDC or GDC.

Next: how | use D to develop Multiplix.
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The style of D that | use

A “kernel" style of D: keep it simple.
Most important features (compared to C):

e Modules.

e Built-in slices with bounds-checking.

e RAIl or scope(exit) for resource management.

e No preprocessor, contracts, more sane than C, .. ..

Library code additionally makes use of:

e Templates (for the allocator, data structures, generic bitwise operations).
e Destructors (for resource management and concurrency primitives).
e lterators (for pagetables and other data structures).

Sticking to BetterC by choice (no classes, module constructors, exceptions, etc...). 14/34
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Exception: mixins for system registers

System registers control machine configuration.

They are read/written with a special MRS/MSR instruction.
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Exception: mixins for system registers

const char[] GenSysRegWrOnly(string name) =

‘pragma(inline, true) ¢ ~

‘static void ¢ name ~ ‘(uintptr v) {
asm {
"msr ¢ T name ~ ¢, %0" : : "r"(v);
}

s

struct SysReg {
mixin(GenSysReg! ("spsr_el2"));
mixin (GenSysReg!("hcr_el2"));
//
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Exception: mixins for system registers

// Set spsr to return to EL1lh.

SysReg.spsr_el2 = Spsr.a | Spsr.i | Spsr.f | Spsr.ellh;
// Configure EL1 to run in aarch64 mode.

SysReg.hcr_el2 = Hcr.rw_aarch64;

// Enable all debug exceptions in kernel mode.
SysReg.mdscr_ell = SysReg.mdscr_ell | Mdscr.mde;

// Route debug exceptions to EL2.

SysReg.mdcr_el2 = SysReg.mdcr_el2 | Mdcr.tde;

Very convenient!

C and Rust would use macros for this and still end up with a worse interface.
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How to handle shared memory

Shared memory is a source of bugs, and D can help us to avoid some problems.
Approaches for handling managing global data:

e Make the data CPU-local (don't share it!).

e Force data access to go through a lock (Rust-style).

e Use manual locks with RAIl or scope(exit).

e Only use the data in a single-threaded context.
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r-CPU data

Per-CPU data is not the same as thread-local data: it is not preserved across a thread

migration.

This data changes when a thread is migrated, so we cannot make it thread-local.

struct PerCpu(T) {
T[Machine.ncores] vals;
// note: interrupts must be disabled
ref T val() shared {
return *cast(T*) &this.vals[rdcpu()];
}

alias val this;

shared PerCpu!(int) x;
void foo () {
x = bar();
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Rust/Fearless-style locks

shared Mutex!(int) foo = Mutex!(int) (10);
void bar () {

auto foo = typeof (foo).Guard (&foo);
printf ("%d\n", foo.val);
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Rust/Fearless-style locks

shared Mutex!(int) foo = Mutex!(int) (10);

void bar () {
auto foo = foo.lock();
printf ("%d\n", foo.val);

Note: this version relies on Named Return Value Optimization.
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Rust/Fearless-style locks

shared Mutex!(int) foo = Mutex!(int) (10);
void bar () {

auto foo = foo.lock();
printf ("%d\n", foo.val);

Note: this version relies on Named Return Value Optimization.

Built on top of a spinlock primitive implemented with atomics.
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Rust/Fearless-style locks

struct Mutex(T) {
private T valj;
private Spinlock lock;

this(T v) {
val = v;

static struct Guard {
private shared Mutex!(T)* mutex;
this (shared Mutex!(T)* m) {
mutex = m;
mutex.lock.lock();

ref T val() {
// cast away the ’shared’
return *cast(T#*) &mutex.val;
}
alias val this;
“this O {
mutex.lock.unlock();
}
@disable this();
@disable this(this);

@disable void opAssign(Guard);
) 18/34



Rust/Fearless-style guards

static struct Guard {
private shared Mutex!(T)* mutex;
this (shared Mutex!(T)* m) {
mutex = m;
mutex.lock.lock () ;

ref T val() {
// cast away the ’shared’
return *cast(T*) &mutex.val;
}
alias val this;
“this () { mutex.lock.unlock(); 2
@disable this();
@disable this(this);
@disable void opAssign(Guard);
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The infamous __gshared

Sometimes __gshared is useful, but the compiler cannot enforce safety.

e The data is manually protected by a lock.

e The data is only accessed by a single core (e.g., during boot when only one core is
running).

Annoyance: the gshared double-underscore.
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Allocator API

ubyte [] kalloc(usize sz); //
ubyte [] kzalloc(usize sz); //
T+ knew(T, Args...) (Args args); //
T[] kallocarray(T) (usize nelem); //
void kfree(T) (T* ptr); //
void kfree(T) (T[] arr); /!

alloc ’sz’ bytes

alloc ’sz’ bytes zeroed
alloc and construct a ’T’
alloc slice of ’T’s

free pointer to ’T’

free a slice of ’T’s

Simple, typed, and tracks size information automatically.

The allocator does not need to store per-object allocation sizes.
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Allocator API

ubyte [] kalloc(usize sz); //
ubyte [] kzalloc(usize sz); //
T+ knew(T, Args...) (Args args); //
T[] kallocarray(T) (usize nelem); //
void kfree(T) (T* ptr); //
void kfree(T) (T[] arr); /!

alloc ’sz’ bytes

alloc ’sz’ bytes zeroed
alloc and construct a ’T’
alloc slice of ’T’s

free pointer to ’T’

free a slice of ’T’s

Simple, typed, and tracks size information automatically.

The allocator does not need to store per-object allocation sizes.

Future: possible to enable garbage collection for kernel?
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Using both LDC and GDC

D has two compilers that can target aarch64/riscv64, so we want to use both of them!
Mostly compatible, some differences:

e Builtins for atomics.
e Inline assembly for passing arguments to system/firmware calls.

e Sanitizers.

LDC: GDC (requires version 13):
import 1ldc.llvmasm; import gcc.attributes;
return __asm!(usize)( @register ("x7") usize x7 = fn;

"hve 0", @register ("x0") usize x0 = arg0;

"={x0},{x7},{x0},{x1},{x2}, " {memory}", @register ("x1") usize x1 = argl;

fn, arg0d, argl, arg2 @register ("x2") usize x2 = arg2;
) asm {

"hve 0" : "+r"(x0) : "r"(x7), "r"(x1), "r"(x2)
"memory";
}

return x0;
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Modules and conditional compilation

Architecture-specific code is placed in the arch/riscv64 or arch/aarch64 directory.
Modules within arch import the appropriate architecture-specific package depending
on version tags.

module plix.arch.vm;

version (RISCV64) {
public import plix.arch.riscv64.vm;
} else version (AArch64) A

public import plix.arch.aarch64.vm;
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Focus: increasing correctness with automated checking

| have a research interest in tools for automated bug-finding.

What kind of analysis tools are can be used with Multiplix?

e Static analysis: find bugs by examining the code before running it.

e Dynamic analysis: find bugs while the code is running (usually only enabled for
test runs).
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Static and dynamic analysis

Static analysis: Dynamic analysis:
e D-Scanner. e GCC sanitizer (undefined, address).
e GCC analyzer. e Custom tools.
Usage: Usage:
e Unused variables, return values, etc... e Memory management bugs.
e Unnecessary qualifiers. e Undefined behavior.
e Unsafe pointer accesses. e Race conditions.
Negative: limited information; false e TLB/I-cache mismanagement?.
positives. e Bugs in device code.

Negative: bug must run to be caught.

a H H H |
Even found a minor bug in Linux! 25/34



Dynamic analysis: GCC sanitizer

GDC has -fsanitize=undefined and -fsanitize=address for finding undefined
behavior and memory errors.

We can use -fsanitize=kernel-address instead, and define our own callbacks.

void __asan_loadl_noabort(uintptr addr);
void __asan_load2_noabort (uintptr addr); memory shadow
void __asan_storel_noabort (uintptr addr); free 0
void __asan_store2_noabort (uintptr addr); free 0
allocated 1
. . allocated 1
Basic custom address sanitizer:
allocated 1
e On load/store: check addr against shadow allocated 1
memory. free 0
' free 0

e Update shadow memory in kalloc/kfree.
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Custom dynamic analysis with debug hardware

Dynamic analysis often requires complicated tools:
e Compiler instrumentation (GCC sanitizer).

e Dynamic re-compilation (Valgrind).

Problem: these tools are often too large and
complex to make custom checkers for kernel code.
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Custom dynamic analysis with debug hardware

Another approach: use hardware breakpoints and
watchpoints to do dynamic analysis.

Automated checkers run in the monitor (EL2) and
catch events with traps via breakpoints,
watchpoints, and single-stepping.

Orders of magnitude less code!

Slow but simple (enabled only for debugging runs).

EL1

Debug
Exception

EL2

Debugger
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Dynamic analysis with debug hardware: Data Collider

Finding bugs in multi-threaded code (Data Collider! technique).

tl t2
Approach: induce data races to happen.
1. Trap loads/stores with a range watchpoint. write x @
2. When a load/store is executed mark the address in a
table. delay
3. Delay for a small amount of time.
4. If a separate core traps a load/store with an address in read x
data race!

the table: data race!

YErickson et al. Effective Data-Race Detection for the Kernel, OSDI 2010.
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Dynamic analysis with debug hardware: I-cache checker

How does an OS load a process? (at a high level)

e Write the binary into memory.

e Jump to its entrypoint (somewhere in that memory).
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Dynamic analysis with debug hardware: I-cache checker

How does an OS load a process? (at a high level)

e Write the binary into memory.

e Jump to its entrypoint (somewhere in that memory).

RISC-V specification: RISC-V does not guarantee that stores
to instruction memory will be made visible to instruction
fetches on a RISC-V hart until that hart executes a FENCE.I
instruction

Core

L1 data
cache

L1 instruction

cache
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Dynamic analysis with debug hardware: I-cache checker

How does an OS load a process? (at a high level)

e Write the binary into memory.
e Execute FENCE.I

e Jump to its entrypoint (somewhere in that memory).

RISC-V specification: RISC-V does not guarantee that stores
to instruction memory will be made visible to instruction
fetches on a RISC-V hart until that hart executes a FENCE.|
instruction

Core

L1 data
cache

L1 instruction

cache
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Dynamic analysis with debug hardware: I-cache checker

Automated checker:

1. Record writes to memory into a table.
2. Clear the table when a FENCE.I executes.
3. If the program counter is ever in the table: ERROR!

We can use single-stepping to hook these events.

Core

L1 data
cache

L1 instruction

cache
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Dynamic analysis with debug hardware: I-cache checker

Automated checker:

1. Record writes to memory into a table.
Core
2. Clear the table when a FENCE.I executes.
3. If the program counter is ever in the table: ERROR! L1data |L1instruction
cache cache

We can use single-stepping to hook these events.

Similar checker for Translation Lookaside Buffer (TLB) consistency.
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Build system: Knit

| have been working on a build system called Knit, used for Multiplix.
Knit is not specific to D, but | have an optimization that is especially helpful for D.
The Knit-based build system for Multiplix supports:

e Multiple architectures (RISC-V, AArch64).

e Multiple boards (QEMU, Raspberry Pi, VisionFive).

e Multiple options (optimization, LTO, unified build, sanitizers, D compiler).

e Parallel and incremental builds.
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A brief introduction to Knit

Knit is a general build tool similar to Make for expressing build graphs.
Rules are written in Make-style syntax as an embedded DSL within Lua.

Example: an incremental build for a C project.

local knit = require("knit")

local src = knit.glob("*x.c")

local obj = knit.extrepl(src, ".c", ".o")
local prog = "prog"

return b{

<
$ $prog: $obj @
<D

cc $input -o $output
$ %.o0:D[%.dl: %.c
cc -02 -MMD -c $input -o $output
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Over-engineering the build system: parallel and incremental builds for D

For each D source module foo.d that changes:
Rebuild all modules that import foo.d — only if the APl changes.

The API is expressed by the foo.di file, which can be auto-generated.
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Over-engineering the build system: parallel and incremental builds for D

What we want:

1. A D source file math.d changes.

2. Knit first rebuilds the math.di “header” file for that single source file (using -H).
3. Key part: If the header is unchanged from a prior build, rebuild only math.o.
4

. Otherwise rebuild math.o and all source files that import math (using info from
--makedeps/-MD).
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Over-engineering the build system: parallel and incremental builds for D

Possible using Knit's dynamic task elision feature (with D interface files):

If Knit dynamically detects that a rebuilt file is unchanged, it will skip the build steps
in that subgraph.

Get the incrementality benefit of C header files without having to write them.

Note on simplicity: reducing template usage improves incremental compilation.

More info here: https://zyedidia.github.io/blog/posts/4-incremental-d-knit/
32/34
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Future directions for Multiplix: process isolation

Techniques for isolating processes with software:

e Languaged-based isolation — WebAssembly, Singularity.
e Software fault isolation? (SFI) — Google Native Client (NaCl).

Lightweight Fault Isolation (LFI): a new SFI system | have been working on with very
low overhead (reduced by 2-16x compared to WebAssembly).

LFI for process isolation: all processes run in kernel mode in a single address space
(what could go wrong?)

Benefit: context switch/system call overhead reduced by 10-100x. Feasible? We'll see!

>Wahbe et al. Efficient Software-based Fault Isolation, SOSP 1993.
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Thank you!

Check it out at https://github.com/zyedidia/multiplix.
Knit: https://github.com/zyedidia/knit.
Slides at https://www.scs.stanford.edu/~zyedidia/docs/slides/dconf23.pdf.

Any questions?
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