Drinking the Tears of D's Competitors

Or

Implicit Conversion of Template Instantiations

by Walter Bright

Dlang.org

March 2024
https://twitter.com/WalterBright

| was going to do a presentation on pattern
matching.

But then, | realized that pattern matching depends
on sum types:

https://github.com/WalterBright/DIPs/blob/sumtypes/DI
Ps/INNN-(wgb).md

And sum types proved to be controversial:

https://www.digitalmars.com/d/archives/digitalmar
s/D/sumtypes for D 366242.html

But one thing stood out In those discussions — a
long requested feature was improving the ability
to create template types that were as good as
builtin types.

Implicit Conversions

void moon1(const(int)[]);
void moon2(const int[]);

void sun()

{
const(int)[] a;
moonl(a); // works
moon2(a); // works

const int[] b;
moonl(b); // works
moon2(b); // works

Trying It With a Template

struct X(T) { T[] t; }

void moonl1(X!(const int));
void moon2(const Xl!int);

void sun()

{
Xl(const int) a;
moonl(a); // works
moon2(a); // fails

const Xlint b;
moonl(b); // fails
moon2(b); // works

How Do We Solve This?

First Suggestion

Make X!(const T) and const(X!T) the same type

Danger, Will Robinson!

struct X(T) If X is instantiated with X!(const int* p),
{ bar becomes void bar(const int*).
_ But const X!(int*) will instantiate
T t, bar as void bar(int*).
void bar(T); The function parameter types are
different!

}

Structural Non-Conformance

struct X(T)

{
static if (is(T == const(T))
{
Int a;
}
Tt;

}

So That Isn't Going To Work

But const(int)[] and const(int| |)
are not the same type, either,
SO It isn't necessary for
Xl(const T) and const(X!T)
to be the same type.

Only Need Implicit Conversion With
Qualifier Conversion

https://dlang.org/spec/function.html#function-
overloading

Other implicit conversions will not
be considered in this proposal.

Key Insight

Implicit conversions work on builtin types
pecause the top level can be converted

pecause It can be trivially copied.

Apply that same principle to structs/classes.

Method

e Flelds
 Non-static member functions
* |gnore other members

Fields

Match names
Match ordering

Match placement
Be implicitly convertible

Non-Static Member Functions

 Match names
* Match ordering

» Address of function must be implicitly
convertible (i.e. covariance like overriding
functions)

If all tests pass, it is implicitly convertible!

The Beauty

It's principled
~ollows all existing rules
DoesNn't break the type system

Doesn't create holes In type system

Existing Code

e WIll break If it relies on such conversions not
compiling

* Hard to see legitimate code relying on that

e Can consider this a bug fix rather than a new
feature?

Blast Wave

e Can do implicit conversions of structs/classes
under most circumstances

* Nothing clever about it

* We'll see how this influences things

Tears

template<class T> struct X{ T t; };

void moonl(const X<int>);,
void moon2(X<const int>);

void sun() {
const X<int> *a;
moonl(*a);
moon2(*a); // could not convert ** a’ from ‘const X<int>' to ‘X<const int>’

X<const int> *b;
moonl(*b); // could not convert ** b’ from ‘X<const int>" to ‘X<int>’
moon2(*b);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

