

Drinking the Tears of D's Competitors

by Walter Bright
Dlang.org
March 2024
https://twitter.com/WalterBright

-or-

Implicit Conversion of Template Instantiations

I was going to do a presentation on pattern
matching.

But then, I realized that pattern matching depends
on sum types:

And sum types proved to be controversial:

https://www.digitalmars.com/d/archives/digitalmar
s/D/sumtypes_for_D_366242.html

https://github.com/WalterBright/DIPs/blob/sumtypes/DI
Ps/1NNN-(wgb).md

But one thing stood out in those discussions – a
long requested feature was improving the ability
to create template types that were as good as

builtin types.

Implicit Conversions
void moon1(const(int)[]);
void moon2(const int[]);

void sun()
{
 const(int)[] a;
 moon1(a); // works
 moon2(a); // works

 const int[] b;
 moon1(b); // works
 moon2(b); // works
}

Trying It With a Template

struct X(T) { T[] t; }

void moon1(X!(const int));
void moon2(const X!int);

void sun()
{
 X!(const int) a;
 moon1(a); // works
 moon2(a); // fails

 const X!int b;
 moon1(b); // fails
 moon2(b); // works
}

How Do We Solve This?

First Suggestion

Make X!(const T) and const(X!T) the same type

Danger, Will Robinson!

struct X(T)
{
 T t;
 void bar(T);
}

If X is instantiated with X!(const int* p),
bar becomes void bar(const int*).
But const X!(int*) will instantiate
bar as void bar(int*).
The function parameter types are
different!

Structural Non-Conformance

struct X(T)
{
 static if (is(T == const(T))
 {
 int a;
 }
 T t;
}

So That Isn't Going To Work

But const(int)[] and const(int[])
are not the same type, either,

so it isn't necessary for
X!(const T) and const(X!T)

to be the same type.

Only Need Implicit Conversion With
Qualifier Conversion

https://dlang.org/spec/function.html#function-
overloading

Other implicit conversions will not
be considered in this proposal.

Key Insight

● Implicit conversions work on builtin types
● because the top level can be converted
● because it can be trivially copied.
●

● Apply that same principle to structs/classes.

Method

● Fields
● Non-static member functions
● Ignore other members

Fields

● Match names
● Match ordering
● Match placement
● Be implicitly convertible

Non-Static Member Functions

● Match names
● Match ordering
● Address of function must be implicitly

convertible (i.e. covariance like overriding
functions)

If all tests pass, it is implicitly convertible!

The Beauty

● It's principled
● Follows all existing rules
● Doesn't break the type system
● Doesn't create holes in type system

Existing Code

● Will break if it relies on such conversions not
compiling

● Hard to see legitimate code relying on that
● Can consider this a bug fix rather than a new

feature?

Blast Wave

● Can do implicit conversions of structs/classes
under most circumstances

● Nothing clever about it
● We'll see how this influences things

Tears

template<class T> struct X { T t; };

void moon1(const X<int>);
void moon2(X<const int>);

void sun() {
 const X<int> *a;
 moon1(*a);
 moon2(*a); // could not convert ‘* a’ from ‘const X<int>’ to ‘X<const int>’

 X<const int> *b;
 moon1(*b); // could not convert ‘* b’ from ‘X<const int>’ to ‘X<int>’
 moon2(*b);
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

