
Compiling code is boring and I don’t want to do it

Waiting for the compiler is literally killing me

Átila Neves, Ph.D.

DConf Online 2024

1



Take away

If it’s noticeable, it’s too slow.

– Átila Neves, 2024

2



What are the wizards doing?

3



Turns out, sound is quite slow

• Speed of sound in air at room temperature: 346 m/s

• Latency for 1m: ∼ 3 ms

• Latency musicians can tolerate: ∼ 10 ms

• Solution: Synchronisio Luminus

4



What about normies?

• Street Fighter 4 has 1 frame links: ∼ 17 ms

• Reflexes are ∼ 200 ms

• Reacting isn’t the same as anticipating

• 2s is more than noticeable

• 10s to compile is a long time for a human

5



Latency affects productivity

• The longer it takes to get feedback, the longer it takes to progress

• TDD: small change → feedback please

• Not TDD? Same thing.

• Productivity is inversely proportional to feedback intervals

• Thesis: compile times are killing productivity

6



A typical compiler

7



Buddies!

8



Why compile anyway?

• Am I currently releasing a binary?

• Do I actually want object files?

• Do I want to pay the “linker tax”?

• Rebuild the world for a 1 line diff??

9



My dream

• “Please run the tests that are impacted”.

• Edited one test? Re-run that test.

• Edited production code? Only run impacted tests.

10



Incremental compilation — what if. . .

• The compiler were a server

• It only parsed what was strictly necessary

• You got results nearly instantly?

11



It was the build system this whole time

12



I wasn’t the only one to think of this?

• Examples:

• Typst

• Roslyn C# compiler

• LSP for several languages

• IDE usage optimised for one file being edited

• Inputs: current tree and the diff

• Query system + cache

13



Backend — JIT Compilation

• No object files

• No linker tax

• No I/O (if the input is from the editor)

14



Which JIT?

• Many JIT backends

• libgccjit

• LLVM JIT

• GNU Lightning

• luajit bytecode

• JVM

• Which is the fastest?

• The fastest at what, exactly?

• Pipeline: edit → test result

15



Experiment with different backends

• Toy language capable of writing a serialisation library

• Parse and bind to different JIT backends

• Benchmark

• Profit?

16



Ideally

• Fast incremental compilation

• Ability to isolate dependencies

• Fastest way from AST/IR/bytecode to results

17



Links / References

• Fast typesetting: https://www.user.tu-berlin.de/mhaug/fast-typesetting-

incremental-compilation.pdf

• Roslyn design: https://langdev.stackexchange.com/a/2880

• My JIT experiment: https://github.com/atilaneves/jitlang

18



Once more for those in the back

If it’s noticeable, it’s too slow.

19



Questions?

Slide intentionally left blank

20


