
Reworking the Range API for Phobos v3

by Jonathan M Davis



Ranges in Phobos v2

• Ranges have been a great success story with Phobos v2.

• We want to continue that with Phobos v3.

• Over the years, we have found a variety of issues with ranges
which we would like to take the opportunity to fix.

• The planned changes are iterative, not drastic.

dconf 2024 2



What Are Ranges?

• D’s answer to C++’s iterators.

• Sequences / lists / ranges of elements.

• An abstraction for dynamic arrays / slices.

dconf 2024 3



Categories of Ranges

• random-access ranges

• bidirectional ranges

• forward ranges

• basic input ranges

dconf 2024 4



Basic Range API

bool empty();
T front();
void popFront();

typeof(this) save();

T back();
void popBack();

size_t length;
T opIndex(size_t);

dconf 2024 5



Basic Range API

bool empty();
T front();
void popFront();

typeof(this) save();

T back();
void popBack();

size_t length;
T opIndex(size_t);

dconf 2024 5



Basic Range API

bool empty();
T front();
void popFront();

typeof(this) save();

T back();
void popBack();

size_t length;
T opIndex(size_t);

dconf 2024 5



Basic Range API

bool empty();
T front();
void popFront();

typeof(this) save();

T back();
void popBack();

size_t length;
T opIndex(size_t);

dconf 2024 5



Static Checks vs Behavioral Requirements

• A range must have front, popFront, and empty with the
correct signatures.

• front and back must return the same type.

• Random-access ranges must have length which evaluates to
size_t.

dconf 2024 6



Static Checks vs Behavioral Requirements

• front must return the same value every time until popFront is
called.

• Two independent copies of a range must contain the same
elements in the same order.

• All range API functions must be O(1).

dconf 2024 7



Problems with the Current API

• Auto-decoding

• save

• Underspecified / unspecifiable behavioral requirements

dconf 2024 8



Auto-decoding

• Auto-decoding is an attempt to ensure Unicode-correctness by
default in D.

• Arrays of char and wchar are ranges of dchar.

• UTF-8 (char) and UTF-16 (wchar) are variable-length
encodings.

• Accessing individual indices of char[] and wchar[] risks getting
garbage.

dconf 2024 9



Why Auto-decoding Has Failed

1. You do not get Unicode correctness by default; you still need
to understand Unicode to get correct results.

2. If you do understand Unicode, the way that auto-decoding
solves the problem just gets in the way and makes it harder to
write correct code that is performant.

3. It complicates Phobos considerably because of all the code
that tries to work around it.

dconf 2024 10



save

• Provides a way to get an independent copy of a forward range.

• Required for types where copying them does not result in an
independent copy.

• Frequently forgotten.

dconf 2024 11



Copy Semantics

1. Value types

2. Reference types

3. Pseudo-reference types whose iteration state has value
semantics

4. Pseudo-reference types whose iteration state does not have
value semantics

dconf 2024 12



Copy Semantics

auto copy = orig;
orig.popFront();
// What is the state of copy.front here?

auto copy = orig;
copy.popFront();
// What is the state of orig.front here?

auto copy = orig.save;
orig.popFront();

dconf 2024 13



Copy Semantics
foreach(e; range)
{

// ...
if(foo)

break;
}
// range must be considered invalid.

for(auto __c = range; !__c.empty; __c.popFront())
{

auto e = __c.front;
// ...
if(foo)

break;
}
// range must be considered invalid.

dconf 2024 14



Copy Semantics
foreach(e; range)
{

// ...
if(foo)

break;
}
// range must be considered invalid.

for(auto __c = range; !__c.empty; __c.popFront())
{

auto e = __c.front;
// ...
if(foo)

break;
}
// range must be considered invalid.

dconf 2024 14



Assignment Semantics

auto copy = orig.save;
copy.popFront();
orig = copy;
// What relation do orig and copy now have?
// copy must no longer be used.

dconf 2024 15



init Poorly Defined
There is no guarantee that init is valid, let alone empty.

struct Range
{

int front() { return 42; }
void popFront() {}
bool empty() { return true; }

}

void main()
{

import std.range;
assert(chain(Range.init,

Range.init).init.empty);
}

dconf 2024 16



Empty Ranges

There is no way to get an empty range from a range in O(1)
except via slicing.
void foo(R)(ref R range)
{

// ...
if(range.front == 42)
{

range = R.init;
return;

}
// ...

}

dconf 2024 17



Transient Front

The range API does not specify what happens if you call popFront
after copying front.

auto f = range.front;
range.popFront();
// Is f unchanged?

A Prime example that causes problems with this would be buffer
reuse.

dconf 2024 18



Non-Copyable Types

Range-based functions tend to ignore that non-copyable types are
a thing.

auto range = [NonCopyable.init, NonCopyable.init];
// Error
auto f = range.front;

// Error
auto range = only(NonCopyable.init,

NonCopyable.init);

dconf 2024 19



Random-Access Ranges and Slicing

• Random-access ranges do not require slicing, and forward
ranges are allowed to have slicing.

• $ is not required for either indexing or slicing.

• $ cannot be used for either indexing or slicing.

dconf 2024 20



const and Ranges Don’t Mix

• const elements are fine.

• popFront doesn’t work on a const range.

• There is no way to get a mutable range of const elements
from a const range.

• Slicing arrays does give you a tail-const slice, but this is
special to arrays, and user-defined types cannot emulate it.

dconf 2024 21



Import Required for Arrays

• In order to use arrays as ranges, you must import
std.range.primitives (or std.range).

dconf 2024 22



Proposed Changes: No Autodecoding

• All arrays will be treated as ranges of their actual element
type - i.e. no auto-decoding.

• decode / decodeFront can be called on arrays and ranges to
explicitly decode code points.

• byUTF, byChar, and etc. will allow you to get ranges of each
character type.

• Choice between the replacement character and
UTFExceptions.

• Phobos v3 will mostly stick to ranges of char and not support
ranges of wchar or dchar.

dconf 2024 23



init Must Be Valid
• If a range can be default-initialized, its init value must be

valid.
• If a range is infinite, it’s allowed to disable default

initialization.
• We may or may not allow finite ranges which disable default

initialization.
• If a finite range can be default-initialized, its init value must

be empty.
• The current plan is to allow finite ranges which disable default

initialization but require them to define emptyRange to
provide an empty range.

dconf 2024 24



Dynamic Arrays or Structs

• All ranges must be dynamic arrays or structs.

• No pointers, no classes.

• Pointers and classes must be wrapped by structs.

• This allows for consistent copy and assignment semantics.

dconf 2024 25



No save

• save will no longer be part of the range API.

• All forward ranges must have copy semantics which make
each copy independent.

• Copying a forward range does not need to be implemented in
the same way as save (e.g. it could use ref-counting), but the
semantics are effectively the same.

dconf 2024 26



Basic Input Ranges are Non-Copyable

• Forward ranges are defined by their ability to be copied.

• In order to differentiate between forward ranges and basic
input ranges, basic input ranges must be non-copyable.

• Bugs related to partial copies will be eliminated.

• Functions designed for basic input ranges must either use ref
or require move.

dconf 2024 27



Assignment Semantics

• The assignment semantics must be the obvious semantics
which match the copy semantics.

• Assigning to forward ranges results in replacing the lhs with
an independent copy of the rhs.

• Assigning to a basic input range only works in cases where it’s
a move; otherwise, an explicit move will be required.

dconf 2024 28



Transient front Is Not Allowed

• It is a requirement that if front can be copied, calling
popFront does not affect the copy.

• In some cases, opApply may need to be used instead.

• In some cases, a solution may involve using non-copyable
elements.

• In some cases, reference-counting may be a good solution.

dconf 2024 29



Non-Copyable Elements Will Be Supported

• We will have the necessary traits for non-copyable elements.

• Algorithms should test for non-copyable elements where
appropriate.

__traits(isCopyable , ElementType!R)

hasCopyableElements!R

dconf 2024 30



Tail-const Ranges

• The range API will not directly solve the problem.

• Walter has a DIP that tries to solve the problem more
generically.

dconf 2024 31



Range API Function Names

• We cannot add the range functions to object.d with their
current names because of import conflicts.

• The new range API needs to not have the old basic input
ranges look like the new forward ranges.

• A DIP is required.

dconf 2024 32



Range API Function Names

• front -> first

• popFront -> popFirst

• empty -> isEmpty

• back -> last

• popBack -> popLast

dconf 2024 33



Implementations in Phobos

• Traits and basic helper functions.

• Wrappers for classes as well as updated implementations for
std.range.interfaces.

• Wrappers for ranges to convert between the old and new API.

• Test helpers - both to help ensure that a range type has the
correct behavior and that a range-based function works with
various combinations of ranges.

dconf 2024 34



Documentation

• Basic introduction to ranges for the average user.

• Clear documentation on the behavioral requirements that
come with the range API.

• Clear documentation on the assumptions that can be made
with code that correctly implents the range API.

dconf 2024 35



Questions?

dconf 2024 36


