
Value Lifetimes and Move Semantics
DConf London ’24

Timon Gehr

1 / 33

What is this talk?

▶ Some more of my ideas about how to evolve the language.
▶ Largely aspirational. (For reference, this is D 2.109.1.)
▶ You may however learn something about existing features and their

limitations.
▶ If you’d like to contribute to D, maybe you’ll find a project here.

2 / 33

Locations vs Values

Locations
▶ Stack locations.
▶ Heap locations.

Values
▶ Abstract concept.
▶ A value is stored in one or more locations.

3 / 33

Lifetimes of Locations and Values

Location Lifetimes
▶ Stack. Nested.
▶ GC heap. Virtually infinite lifetime.
▶ Manual. E.g., malloc/free.

Value Lifetimes
▶ Delimited between constructor and destructor.
▶ May overlap arbitarily.

4 / 33

Copies vs Moves
Copies
▶ Default behavior, copied from C.
▶

1 auto a = b; // ‘b‘ copied to ‘a‘
2 writeln (a, " ", b); // can use both ‘a‘ and ‘b‘

▶ New value is constructed to match old value.

Moves
▶ Value is moved into new location.
▶ Currently:

1 auto a = move(b); // ‘b moved to ‘a‘
2 writeln (a); // only supposed to use ‘a‘ now

▶ Actually moves value of b into a and reinitializes b with init value.
5 / 33

NB. Constructors and destructors

1 struct S{
2 @disable this ();
3 this(int){ writeln ("S constructed "); }
4 ~this (){ writeln ("S destroyed "); }
5 }
6

7 void main (){
8 auto s= immutable (S)(0); // S constructed
9 // S live here

10 } // S destroyed

6 / 33

Limitations of constructors and destructors

▶ Seems kind of basic?
▶ Importantly: As far as I am aware, stack variables are always destroyed now

though.
▶ However: The previous slide was still aspirational.

7 / 33

Constructors and type qualifiers
Stack variables can be accessed before being constructed:

1 @safe:
2 int[immutable (int)*] cache;
3 class C{
4 immutable int x;
5 void foo (){
6 if(&x in cache) assert (cache [&x]==x); // fail
7 cache [&x]=x;
8 }
9 this(int x){

10 foo ();
11 this.x=x;
12 }
13 }
14 void main (){
15 auto c=new C(2);
16 c.foo ();
17 } 8 / 33

Destructors and type qualifiers

1 i n t ∗ pun (immutable (i n t) ∗ q) @sa fe {
2 i n t ∗ r ;
3 s t r u c t S{
4 i n t ∗ p ;
5 @ d i s a b l e t h i s () ;
6 t h i s (immutable (i n t) ∗ p) immutable { t h i s . p=p ; }
7 ~ t h i s () { r=p ; }
8 }
9 { auto s=immutable (S) (q) ; }

10 r e t u r n r ;
11 }
12
13 v o i d main () @sa fe {
14 immutable x=new immutable (i n t) (2) ;
15 i n t ∗ p=pun (x) ;
16 pragma (msg , t y p e o f (x)) ; // immutable (i n t ∗)
17 w r i t e l n (∗ x) ; // 2
18 ∗p=3;
19 // a s s e r t (p i s x) ;
20 w r i t e l n (∗ x) ; // 2
21 }

9 / 33

Destructors and type qualifiers

1 i n t ∗ pun (immutable (i n t) ∗ q) @sa fe {
2 i n t ∗ r ;
3 s t r u c t S{
4 i n t ∗ p ;
5 @ d i s a b l e t h i s () ;
6 t h i s (immutable (i n t) ∗ p) immutable { t h i s . p=p ; }
7 ~ t h i s () { r=p ; }
8 }
9 { auto s=immutable (S) (q) ; }

10 r e t u r n r ;
11 }
12
13 v o i d main () @sa fe {
14 immutable x=new immutable (i n t) (2) ;
15 i n t ∗ p=pun (x) ;
16 pragma (msg , t y p e o f (x)) ; // immutable (i n t ∗)
17 w r i t e l n (∗ x) ; // 2
18 ∗p=3;
19 a s s e r t (p i s x) ;
20 w r i t e l n (∗ x) ; // 3
21 }

10 / 33

Total destruction
Stack variables can be destroyed without being constructed:

1 auto foo (){
2 int x=2;
3 struct T{
4 this(int){ writeln ("T constructed "); }
5 ~this (){ writeln ("T destroyed : ",x); }
6 }
7 return T(3);
8 }
9

10 struct S{
11 typeof (foo ()) t;
12 this(int){
13 throw new Exception ("oops.");
14 t=foo ();
15 }
16 }

11 / 33

Memory safety vs crash safety
Safety
▶ Safety means “bad things do not happen”.
▶ Safety is often qualified.

Memory safety
▶ Memory safety means all behavior of a function is defined.
▶ Type safety: “Well-typed programs are memory safe.”
▶ Languages like D or Rust are not type safe.
▶ Common aim: Conditional type safety.

Memory safety is a lowest-common denominator notion of safety, it is required
for any other kind of safety. Memory unsafe programs often suffer from remote
code execution exploits.

12 / 33

Dealing with unsoundness
▶ Good rule of thumb: If it is not formally verified, it is probably unsound.
▶ If it is formally verified, there is probably a bug in the specification.
▶ If there is no bug in the specification, there is probably still some other part

of your system that is not formally verified.
▶ If your entire system is formally verified, there is still the possibility of holes

in your formal system.
▶ Hence software licenses usually say “ABSOLUTELY NO WARRANTY OF

FITNESS FOR ANY PARTICULAR PURPOSE”.
▶ “Just don’t write bugs” is a surprisingly common attitude, but delusional for

basically any non-trivial system, without formal methods.
▶ Type systems are a lightweight form of formal methods that are widely

deployed. Formally verifying them is consequential.

13 / 33

(Other type systems are unsound, too)

14 / 33

@trusted

▶ Common misconception: @trusted means “memory unsafe, do not check
this”.

▶ The opposite is the case, it means “memory safe, but not checked”.
▶ It is the precondition for D’s aspired conditional type safety guarantee.
▶ The precondition is vacuously satisfied if you do not write @trusted code.

Hence @safe yields a type safe subset of the language. (Aspirationally.)

15 / 33

@live

▶ @live does not improve conditional type safety. It does not give additional
safety guarantees for code that is already @safe.

▶ It may or may not help you with improving memory safety of a specific piece
of @system/@trusted code. YMMV.

▶ Consider it to be a linting tool helpful with a specific, restrictive way of
writing code.

▶ This is not like Rust’s borrow checker even though it technically checks
borrows.

▶ May be a good basis for future type system extensions that do give
conditional type safety guarantees.

16 / 33

Spreading a bit of GC FUD

(Live Demo.)
1 impor t s t d . s t d i o , s t d . random ;
2
3 s t r u c t S{
4 ubyte [1 0 2 4] pay load ;
5 S∗ next ;
6 }
7
8 v o i d main () {
9 S∗ head = new S ;

10 S∗ c u r r = head ;
11 i n t i =0;
12 f o r (; ; i ++){
13 c u r r . nex t = new S ;
14 c u r r = c u r r . nex t ;
15 i f (! (i %1000000)) w r i t e l n (c u r r) ;
16 }
17 // w r i t e l n (∗ head) ;
18 }

17 / 33

Garbage collection is undecidable

▶ Technically, tracing GC is an approximate heuristic.
▶ It says data can be deallocated when it is no longer reachable.
▶ Actually, data can be deallocated when it will no longer be accessed.
▶ Compilers can and do sometimes optimize a program that has a memory

leak to one that does not.
▶ The example program might blow up sporadically in a hard to explain way if

a false pointer appears. (Less likely on 64 bit.)

18 / 33

Tracing GC

▶ In my experience: If I
▶ Use the GC.
▶ Do not use type qualifiers.

▶ Then memory safety is very rarely a concern.
▶ The main potential source of unsafety is escaping stack references.

19 / 33

Reasons to use @safe

▶ Therefore, I think the most important reasons to use @safe are:
▶ Simple: When working in a team, to ensure people use the language in the

“simple” way, that is clearly type safe. (See Robert’s “Simple @safe D” talk
from DConf’23.)

▶ Expressive: Trying to do error-prone things like taking stack references and
manually managing memory. While being drunk and/or tired. Without any
worry it will cause a week-long debugging frenzy in front of the release
deadline.

▶ One of these is more interesting, but the other one is both easier and more
important for getting taken seriously.

20 / 33

Are we type safe yet?
For the simple @safe D direction, I think we need:
▶ Initialization safety.
▶ Fully reliable stack reference detection. (E.g., slicing static arrays.) Maybe

even promote them to the heap.
▶ A GC that works better both inside and outside of single-threaded batch

programs (thanks Steven/Amaury!)
▶ Find a way to deal with inout.
▶ Fix type checking for qualified delegate contexts.
▶ Fix closure allocation in loops.
▶ Think about ways to validate DMD against a formally-verified

implementation of the fully lowered D subset. E.g., guided test case
generation.

▶ Fix all the other bugs.
21 / 33

Are we expressive yet?
For the expressive direction, I think DIP1000 has significant limitations while also
being quite confusing at first. Probably we can find a better tradeoff.
Things to explore:
▶ Move semantics. (DIP1040)
▶ Move constructors. (DIP1040)
▶ Escape checking for non-nested lifetimes.
▶ Multiple indirections.
▶ Effect polymorphism. (Dennis had to break the type system!)
▶ Attribute inference for recursive functions (hard).
▶ Or even just conditional attributes?
▶ Better escape analysis in the frontend.
▶ @nogc exceptions. (DIP1008)
▶ Ownership/isolated.

22 / 33

Working with what we have

▶ “One indirection ought to be enough for anyone”. Tuple of arrays.
▶ @system fields.
▶ Fake stack references. (E.g., Dennis’ arena design)
▶ Runtime checks instead of or to complement type system features.

▶ After all, range checks are how we took care of buffer overruns. We can also
do this for use after free.

▶ scope/pure/static callbacks with DIP1000.
1 smartPointer . access !((ref x){ smartPointer =other }); //

runtime crash

23 / 33

Benefits of runtime checks

▶ Typically much more precise.
1 auto v = vectorFrom (1, 2, 3);
2 assert (i!=j);
3 scope x = &v[i]; // returns by reference
4 scope y = &v[j]; // type systems likely to reject this
5 *x=2;
6 *y=3;

24 / 33

1 auto v = vectorFrom (1, 2, 3);
2 assert (i!=j);
3 // if we do not allow aliases , v only has to count borrows
4 scope x = v. borrow (i);
5 scope y = v. borrow (j);
6
7 // even aliasing can in principle be allowed
8 // at the cost of higher auxiliary memory usage
9 // scope z = v. borrow (i);

10
11 x. access !((ref int x){ x=2; });
12 y = 2; // syntax sugar for the above pattern
13
14 // v~=2; // would crash at runtime
15
16 v. return (x);
17 v. return (y);
18
19 // ok , nothing borrowed out , reallocation would be safe
20 v~=2;

▶ Not safe against crashes. Requires storing additional data to check
time-dependent properties. “Time range check.”

25 / 33

DIP 1040

DIP1040 by Max Haughton and Walter Bright. Post community round 1.
▶ DIP1040 proposes to move the static last use of a variable:

26 / 33

DIP 1040
▶ Can disable the copy constructor to force moves:

1 struct S{
2 this(int x){ ... }
3 @disable S(ref S other); // copy constructor
4 S(S other){ ... } // move constructor (also DIP1040)
5 }
6

7 auto a = S(2);
8 auto b = a; // ok , a is moved
9 auto c = b; // ok , b is moved

10

11 auto x = S(2);
12 auto y = x; // error: x is copied
13 auto z = x;

Potentially, DIP1040 is a big step up for the usability of move-only types.
27 / 33

Move-only types

Move-only types can support:
▶ Value-type-like referential transparency.
▶ Efficient mutable updates.
▶ No implicit costly duplication.
▶ They behave like resources.
▶ D essentially supports substructural typing via @disable of special member

functions.

28 / 33

Move constructors

1 struct S{
2 this(S other){ ... }
3 }

▶ Structs in D are always implicitly moveable.
▶ Without a move constructor, this means structs cannot have internal

references.
▶ This has implications for expressiveness and C++ interoperability.
▶ Move constructors

29 / 33

Danger: Implicit destructor elision
In DIP1040, the move constructor implicitly passes by ref:

1 struct S{
2 private @system int* x;
3 T t;
4 ...
5 ~this () @trusted {
6 if(x) free(x);
7 x=null;
8 }
9

10 // implicitly S(ref other), but recorded as move
constructor :

11 S(S other) @trusted {
12 this.x=other.x;
13 other.x=null;
14 this.t=other.t; // copy
15 }
16 }
17

18 struct T{
19 private @system int [] x;
20 this(ref T other) @trusted { // copy constructor
21 auto ptr = malloc (int. sizeof *other.x. length);
22 this.x = ptr [0.. other.x. length];
23 this.x[] = other.x[];
24 }
25 }

30 / 33

Tweaking DIP1040

1 struct S(T){
2 this(T)(T arg){ ... }
3 }

▶ Destructor elision is very dangerous.
▶ Might implicitly break RAII.
▶ Can cause memory leaks.
▶ Better approach: Destructor elision should be explicit.
▶ Also useful for unpacking.

31 / 33

Not addressed by DIP1040

▶ How to force a move?
▶ How to move the receiver of a method call?
▶ How to move a container into a range into an iteration over the range?
▶ Unpacking/destructuring without copies.
▶ How to avoid reinitialization with .init?

▶ Needed to make private @system destructors useful.
▶ Reinitialization.
▶ Reinitialization with a different type (strong updates).
▶ Non-lexical variable lifetimes.

32 / 33

Thanks!

Questions?

33 / 33

