Value Lifetimes and Move Semantics
DConf London '24

Timon Gehr

1/33

What is this talk?

» Some more of my ideas about how to evolve the language.
» Largely aspirational. (For reference, this is D 2.109.1.)

» You may however learn something about existing features and their
limitations.

» If you'd like to contribute to D, maybe you'll find a project here.

2/33

Locations vs Values

Locations
» Stack locations.

» Heap locations.

Values
» Abstract concept.

> A value is stored in one or more locations.

3/33

Lifetimes of Locations and Values

Location Lifetimes
» Stack. Nested.
» GC heap. Virtually infinite lifetime.
» Manual. E.g., malloc/free.

Value Lifetimes
» Delimited between constructor and destructor.

» May overlap arbitarily.

4/33

Copies vs Moves

Copies
» Default behavior, copied from C.
>
1 auto a = b; // ‘b¢ copied to ‘af
2 writeln(a, " ", b); // can use both ‘a‘ and ‘bf

» New value is constructed to match old value.

Moves
» Value is moved into new location.
» Currently:
1 auto a = move(b); // ‘b moved to ‘af

¢ ¢

> writeln(a); // only supposed to use ‘a‘ now

» Actually moves value of b into a and reinitializes b with init value.
5/33

NB. Constructors and destructors

struct S{
@disable this();
this(int){ writeln("S constructed"); }
~this(){ writeln("S destroyed"); }

}

void main (){
auto s=immutable(S)(0); // S constructed
// S live here

} // S destroyed

© © N o o »~ W N =

fun
o

6/33

Limitations of constructors and destructors

» Seems kind of basic?

» Importantly: As far as | am aware, stack variables are always destroyed now
though.

» However: The previous slide was still aspirational.

7/33

Constructors and type qualifiers
Stack variables can be accessed before being constructed:

1 @safe:
2 int [immutable (int) *] cache;
3 class C{
4 immutable int x;
void foo(){

5

6 if (&x in cache) assert(cache[&x]==x); // fail
7 cache [&x]=x;
8 }

9 this (int x){

10 foo) ;

11 this.x=x;

12 }

13 F

14 void main () {

15 auto c=new C(2);
16 c.foo();

17 }

8/33

Destructors and type qualifiers

1 int* pun(immutable(int)* q)@safe{

2 int *r;

3 struct S{

4 intx p;

5 @disable this();

6 this(immutable(int)* p)immutable{ this.p=p; }
7 ~this(){ r=p; }

8

9 {auto s=immutable(S)(q);}

10 return r;

1}

12

13 void main() @safe{

14 immutable x=new immutable(int)(2);
15 int* p=pun(x);

16 pragma(msg, typeof(x)); // immutable(int=x)
17 writeln(xx); // 2

18 *p=3;

19 //assert(p is x);

20 writeln (*x); // 2

9/33

Destructors and type qualifiers

©O~NOUC A WNR

1}

int* pun(immutable(int)x q)@safe{

int *r;
struct S{
intx p;
@disable this();
this(immutable(int)* p)immutable{ this.p=p; }
~this(){ r=p; }

{auto s=immutable(S)(q);}
return r;

13 void main() @safe{

immutable x=new immutable(int)(2);

int* p=pun(x);

pragma(msg, typeof(x)); // immutable(int=x)
writeln(xx); // 2

*p=3;

assert(p is x);

writeln(*x); // 3

10/33

Total destruction
Stack variables can be destroyed without being constructed:

1 auto foo(){

3

2 int x=2;

3 struct To

4 this(int){ writeln("T constructed"); }
5 ~this(){ writeln("T destroyed: ",x); }
6 }

7 return T(3);

8

9

10 struct S{
1 typeof (foo()) t;
12 this (int){

13 throw new Exception("oops.");
14 t=foo () ;

15 }

16 }

11/33

Memory safety vs crash safety

Safety

» Safety means “bad things do not happen”.
» Safety is often qualified.

Memory safety
» Memory safety means all behavior of a function is defined.
» Type safety: “Well-typed programs are memory safe.”
» Languages like D or Rust are not type safe.
» Common aim: Conditional type safety.
Memory safety is a lowest-common denominator notion of safety, it is required

for any other kind of safety. Memory unsafe programs often suffer from remote

code execution exploits.
12/33

Dealing with unsoundness

vy

Good rule of thumb: If it is not formally verified, it is probably unsound.
If it is formally verified, there is probably a bug in the specification.

If there is no bug in the specification, there is probably still some other part
of your system that is not formally verified.

If your entire system is formally verified, there is still the possibility of holes
in your formal system.

Hence software licenses usually say “ABSOLUTELY NO WARRANTY OF
FITNESS FOR ANY PARTICULAR PURPOSE".

“Just don't write bugs"” is a surprisingly common attitude, but delusional for
basically any non-trivial system, without formal methods.

Type systems are a lightweight form of formal methods that are widely
deployed. Formally verifying them is consequential.

13/33

(Other type systems are unsound, too

)

Public L\ Notifications % Fork 100 Y% Star 3.9k

<> Code () Issues 12 19 Pullrequests 5 () Actions [Projects @ Security

¥ main ~ i34 o Go to file <> Code ~ About

Blazingly & fast # memory
vulnerabilities, written in 100%
safe Rust.

9 Creative0708 2x short... a4d3538 - 5 months ago <Y

B8 github/workflows --debug is not allow... 7 months ago

Readme
B .vscode add bench for tran... 7 months ago
View license

B assets add cve-rs logo 7 months ago Activity

3.9k stars
B benches Spacing 7 months ago

25 watching
[] examples docs(README): gif i... 5 months ago 100 forks

Report repositor
| src feat(main): shell co... 5 months ago f P y

14/33

Q@trusted

» Common misconception: etrusted means “memory unsafe, do not check
this”.

» The opposite is the case, it means “memory safe, but not checked”.

» It is the precondition for D's aspired conditional type safety guarantee.

» The precondition is vacuously satisfied if you do not write etrusted code.
Hence esate yields a type safe subset of the language. (Aspirationally.)

15/33

Q@live

@live does not improve conditional type safety. It does not give additional
safety guarantees for code that is already @safe.

It may or may not help you with improving memory safety of a specific piece
of esystem/@trusted code. YMMV.

Consider it to be a linting tool helpful with a specific, restrictive way of
writing code.

This is not like Rust’s borrow checker even though it technically checks
borrows.

May be a good basis for future type system extensions that do give
conditional type safety guarantees.

16/33

Spreading a bit of GC FUD

-
CLOOWNOUAWNR

11
12
13
14
15
16
17
18

(Live Demo.)

import std.stdio, std.random;

struct S{

ubyte[1024] payload;
S* next;

void main(){

)

S head

Sx curr

int i=0;
for (5 i++H){

curr.next = new S;

curr = curr.next;

new S;
head;

if (1(1%1000000)) writeln(curr);

}
//writeln (xhead);

17/33

Garbage collection is undecidable

vvyyvyy

v

Technically, tracing GC is an approximate heuristic.
It says data can be deallocated when it is no longer reachable.
Actually, data can be deallocated when it will no longer be accessed.

Compilers can and do sometimes optimize a program that has a memory
leak to one that does not.

The example program might blow up sporadically in a hard to explain way if
a false pointer appears. (Less likely on 64 bit.)

18/33

Tracing GC

» In my experience: If |

» Use the GC.
» Do not use type qualifiers.

» Then memory safety is very rarely a concern.

» The main potential source of unsafety is escaping stack references.

19/33

Reasons to use esate

» Therefore, | think the most important reasons to use @safe are:

» Simple: When working in a team, to ensure people use the language in the
“simple” way, that is clearly type safe. (See Robert's “Simple @safe D" talk
from DConf'23.)

» Expressive: Trying to do error-prone things like taking stack references and
manually managing memory. While being drunk and/or tired. Without any
worry it will cause a week-long debugging frenzy in front of the release
deadline.

» One of these is more interesting, but the other one is both easier and more
important for getting taken seriously.

20/33

Are we type safe yet?

For the simple esafe D direction, | think we need:

>
>

v

vvyyvyy

Initialization safety.

Fully reliable stack reference detection. (E.g., slicing static arrays.) Maybe
even promote them to the heap.

A GC that works better both inside and outside of single-threaded batch
programs (thanks Steven/Amaury!)

Find a way to deal with inout.
Fix type checking for qualified delegate contexts.
Fix closure allocation in loops.

Think about ways to validate DMD against a formally-verified
implementation of the fully lowered D subset. E.g., guided test case
generation.

Fix all the other bugs.

21/33

Are we expressive yet?
For the expressive direction, | think DIP1000 has significant limitations while also
being quite confusing at first. Probably we can find a better tradeoff.
Things to explore:

>

VvVvVvyVvVYVYyYVYVYYVYY

Move semantics. (DIP1040)

Move constructors. (DIP1040)

Escape checking for non-nested lifetimes.

Multiple indirections.

Effect polymorphism. (Dennis had to break the type system!)
Attribute inference for recursive functions (hard).

Or even just conditional attributes?

Better escape analysis in the frontend.

@nogc exceptions. (DIP1008)

Ownership/isolated.

22/33

Working with what we have

» “One indirection ought to be enough for anyone”. Tuple of arrays.
» @system fields.
» Fake stack references. (E.g., Dennis’ arena design)

» Runtime checks instead of or to complement type system features.

» After all, range checks are how we took care of buffer overruns. We can also
do this for use after free.

> scope/pure/static callbacks with DIP1000.

1 smartPointer.access!((ref x){ smartPointer=other }); //
runtime crash

23/33

Benefits of runtime checks

» Typically much more precise.

1
2
3
4
5
6

auto v = vectorFrom(1l, 2, 3);
assert(i!=j);
scope x = &v[i]; // returns by reference

scope y = &v[jl; // type systems likely to
*xX=2;
*y=3;

reject this

24/33

1 auto v = vectorFrom(1l, 2, 3);

2 assert(il!=j);

3 // if we do not allow aliases, v only has to count borrows
4 scope x = v.borrow(i);

5 scope y = v.borrow(j);

6

7 // even aliasing can in principle be allowed

8 // at the cost of higher auxiliary memory usage

9 // scope z = v.borrow(i);

10

11 x.access! ((ref int x){ x=2; });

12 y = 2; // syntax sugar for the above pattern

13

14 // v~=2; // would crash at runtime

15

16 v.return(x);

17 v.return(y);

18

19 // ok, nothing borrowed out, reallocation would be safe
20 v~=2;

» Not safe against crashes. Requires storing additional data to check
time-dependent properties. “Time range check.”

25/33

DIP 1040

DIP1040 by Max Haughton and Walter Bright. Post community round 1.
» DIP1040 proposes to move the static last use of a variable:

26/33

DIP 1040

>

© © N o O A W N =

i =
w N = O

Can disable the copy constructor to force moves:

struct S{
this(int x){ ... }
@disable S(ref S other); // copy constructor
S(S other){ ... } // move constructor (also DIP1040)
}
auto a = S(2);
auto b = a; // ok, a is moved
auto ¢ = b; // ok, b is moved

auto x = S(2);
x; // error: x is copied
auto z = Xx;

auto

<
1]

Potentially, DIP1040 is a big step up for the usability of move-only types.

27/33

Move-only types

Move-only types can support:
» Value-type-like referential transparency.

Efficient mutable updates.

>

» No implicit costly duplication.
» They behave like resources.
>

D essentially supports substructural typing via @disable of special member
functions.

28/33

Move constructors

1 struct S{
2 this(S other){ ... }
3 }

» Structs in D are always implicitly moveable.

» Without a move constructor, this means structs cannot have internal
references.

» This has implications for expressiveness and C++ interoperability.

» Move constructors

29/33

Danger: Implicit destructor elision
In DIP1040, the move constructor implicitly passes by ref:

1 struct S{

2 private @system int* x;

3 T t;

4 e .

5 ~this () @trustedq{

6 if (x) free(x);

7 x=null;

8 }

9

10 // implicitly S(ref other), but recorded as move
constructor:

1 S(S other)@trusted{

12 this.x=other.x;

13 other .x=null;

14 this.t=other.t; // copy

15 }

16 }

30/33

Tweaking DIP1040

1 struct S(T){
2 this (T) (T arg){ ... }
3 }

Destructor elision is very dangerous.

Might implicitly break RAII.

Can cause memory leaks.

Better approach: Destructor elision should be explicit.

VvyVvYvyy

Also useful for unpacking.

31/33

Not addressed by DIP1040

How to force a move?
How to move the receiver of a method call?
How to move a container into a range into an iteration over the range?

Unpacking/destructuring without copies.

vvyyvyvyy

How to avoid reinitialization with .init?
> Needed to make private @system destructors useful.

v

Reinitialization.

v

Reinitialization with a different type (strong updates).

» Non-lexical variable lifetimes.

32/33

Thanks!

Questions?

33/33

