
D and buck2

Build systems

Automate our processes

Capture dependency information

Examples

make

But also Microsoft Excel.

Many, many, more

All subtly different.

Excellent paper called "build systems à la carte"

My point

Much discussion of faster horses in this space.

Untapped value in not trying to copy (say) npm, or even CMake.

Analogy with testing - tests are a collection of assumptions about program behaviour
rather.

Our build systems can be more "general" in this sense, but currently aren't.

Look towards interesting alternatives.

Common problems.

Some patterns that often happen in projects:

Slow. Doing too much work.

Tests: Often brittle, but under powered, poor feedback loops

Reliant on host machine being just-so.

"Bits versus Atoms" but just within the bits.

Why

"Terminal complexity bubble crisis"

We aren't being strict enough. There isn't enough information for tools to use.

make underrated, makes you write stuff down.

Some patterns encourage bloat e.g. hormesis

The abstractions underlying the tools are also weak.

make overrated, lots of typing.

A solution

People have thrown money at solving this problem before.

So-called "declarative build systems".

A handful exist (in public), in particular Bazel, buck2, and pants.

Input looks like this

cxx_library(
 name = "foo",
 src = glob(["src/lib/*.cpp"])
)

d_binary(
 name = "program",
 src = "src/main.d"
 deps = [:foo]
)
and so on

Output is ...

object files and executables. Shocker.

But also (say) tests, as part of our build graph.

What's the difference.

Explicit

Enforcing rules under the hood: Builds should be hermetic.

e.g. Use a file you don't say you need -> fail.

Questions we can now ask, things we can do

Exactly which files could this rule access

For this diff which rules do we run, without having already run it e.g. faster test suites

Have we built this before: Cache.

Why buck2 quickly.

Why buck2 now:

buck2 is relatively new, the others are priced in.

Someone, not entirely sure who, has already done D rules for bazel.

Why buck2 in general vs Bazel:

Cleaner theoretical model. Bazel splits builds into three phases, buck2 hides this.

buck2 has no rules built in.

buck2 is a single static binary (afaict bazel isn't)

buck2 starlark can be statically type checked.

How do we teach buck2 new tricks

Starlark language.

rules , providers and so on.

Rules are passed an AnalysisContext , output DefaultInfo() , RunInfo() and so
on.

We have to write everything down.

Good and bad to this. Hormesis.

Ogilvy on advertising.

A starlark example

Actually not building anything.

Format / lint check

Why is this not usually part of the build system?

Rules for a javascript linter.

BiomeToolchain = provider(
 fields = {
 "biome_binary": provider_field(RunInfo)
 }
)

def _biome_toolchain_impl(ctx: AnalysisContext) -> list[Provider]:
 urlToFetch = ctx.attrs.biome_url
 shaShouldBe = ctx.attrs.biome_sha256

 downloadTo = ctx.actions.declare_output(ctx.label.name)
 ctx.actions.download_file(downloadTo, urlToFetch, sha256 = shaShouldBe, is_executable = True)

 return [DefaultInfo(), BiomeToolchain(
 biome_binary = RunInfo(args = [downloadTo])
)]

biome_toolchain = rule(
 impl = _biome_toolchain_impl,
 attrs = {
 "biome_url": attrs.string(),
 "biome_sha256": attrs.string()
 },
 is_toolchain_rule = True
)

We then use like this:

load("@rules//biome_linter.bzl", "biome_toolchain")

biome_toolchain(
 name="biome_toolchain",
 biome_url = "https://github.com/biomejs/biome/releases/download/cli%2Fv1.9.1/biome-linux-x64",
 biome_sha256 = "931aa434bdee3aca1ddb3119e97f1028b0b11cdc206107d9415e537f4dd8e27f",
 visibility = ["PUBLIC"]
)

Note the integrity check.

Running the tool now we've downloaded it

def _biome_check_impl(ctx: AnalysisContext) -> list[Provider]:
 runThis = ctx.attrs.biome_toolchain[BiomeToolchain].biome_binary
 onThis = ctx.attrs.file

 return [DefaultInfo(), ExternalRunnerTestInfo(
 type = "format",
 command = [runThis, "ci", onThis]
)]

biome_check = rule(
 impl = _biome_check_impl,
 attrs = {
 "file": attrs.source(),
 "biome_toolchain": attrs.toolchain_dep(default = "toolchains//:biome_toolchain", providers = [BiomeToolchain])
 }
)

To use it:

load("@rules//biome_linter.bzl", "biome_check")

biome_check(
 name = "lint_js",
 file = "src/file.js"
)

To run:

buck2 test :lint_js

We can also query for all rules touching js of kind == "format"

Output

Why not:

A google search yields a link to the article:

"Why Declarative Build Systems Arenʼt Popular"

"Not built for open source." This is basically fair.

"Closely coupled with monorepo architecture." Also fair.

"Not helpful or detrimental for small projects." Also fair.

First and last points aren't anywhere near as bad with buck2 than bazel IMO.

In particular the on-ramp for a new project should be (in theory) much smoother if one

willing to be creative.

