
REDUB

 Configuring, Building, and Iterating

REDUB - PLANNED FEATURES

Features Dub Redub Reggae

Parallel Compilation

Baked Commands

Global Cache

Configuration Freedom

Focus on User Experience

Backed by D Code

No External Dependencies

Dub x Redub x Reggae

REDUB - SUPPORTED PROJECTS

Supported Projects

REDUB - DEBUGGING DUB

Dub’s first run

Dub’s trial of creating
dub.selections.json is painfully
slow
On first run, a full rebuild takes
27 seconds, against 1 second
from redub
Really hard to understand
what’s going on

REDUB - DUB DEBUGGING

Very slow iteration, making it way harder
to test
On Amd uProf, dub.loadPackage() costs
26% out of 37% of the processing time
[70% of the time is spent on package
loading]
dyaml the main culprit as it creates a very
deep call stack.

Debugging Dub

Time spent on up-to-
date build

REDUB - COMPARISON

Comparing to Redub
Very shallow call stack
On Amd uProf, dub.loadPackage() costs
1.69% of the processing time is spent on
package loading
It has enough time to even content hash
check
The complete operation takes 8% of the
time dub takes

Time spent on up-
to-date-build

REDUB - COMPARISON

Comparing to Redub

Redub does not use a dub.selections file
Plenty of projects does not run without a version lock file -- SemVer
is not being used correctly in projects, though adapting to create a
lock files is easy to do, I don’t think it is the best way to solve the
problem.
Redub uses version specification for matching the current files in
the developer’s environment. If none match, it delegates a dub fetch

REDUB - IMPROVEMENT

Avoid state mutation, unless used for
caching operations
Cache JSON files
Better JSON Algorithm
No Intermediate Representation: single
file type for consistency and lower
workload
Lazy package parsing
Functional Programming: So, one does
not need to read too much code to
understand it

How Redub improved

REDUB - CONFIGURATION FLEXIBILITY

Beyond the performance improvement

DUB REDUB

Dependency per OS
Dependency per compiler
Does not require the
dependency to be in folder if
it is not being used
Have_version gets more
meaning

REDUB - USER EXPERIENCE IMPROVEMENT

Beyond the performance improvement

Newer version suggestion

Redub meta information

Suggests newer versions when
having a compilation error
Caches compiler version and type
Configurable default compiler
Constant compilation time awareness
Uses content hashing, so the file is not
rebuilt on a simple resave

Compilation
timings

REDUB - DEVELOPMENT PLAN

Development Plan
Starting Small

All at Once: Create a struct that can contain any content
inside dub.json
Path Based: Don’t care about version, only where to parse
Parallelize: Try to be stateless whenever possible so it is
easier to deal with parallel
Dub’s Output: Use verbose and try to replicate
Support Hipreme Engine: Redub must also support its
dependencies
Find where dub is slow: Understand and tackle those places
Build and Run: Do not care about package management or
other responsibilities dub have on the beginning

REDUB - DEVELOPMENT PLAN

Going Further with content hashing

Avoid Building: Dub always rebuilt your project if you hit save
on your code editor, redub needs to address that
Hashing Check: Fast algorithm needed, and a quick research
would show xxhash as an option. It’s 3 times faster than using
md5 in practice
Idle Searching: When running in parallel, the main thread was
idle, but it was possible to start hash calculating after the first
file finished, providing a big increase in speed
Separate Responsibility: Redub created a new package called
adv_diff, all it does is storing a cache formula which could be
compared to others and output their differences, so, the code
were easier to maintain

REDUB - PLANNED FEATURES

Hipreme Engine - Using DMD

Compilation Time Comparison

Root Only Build

Full Rebuild on
DUB

Full Rebuild on
REDUB

Reggae’s just too hard to configure, in that
case, it is trying to find a file which doesn’t

even exist

REDUB - PLANNED FEATURES

VibeD - Hello World - Full rebuild using DMD

Compilation Time Comparison

DUB REDUB REGGAE + NINJA

Some investigative work should be done on
ninja. On the first run, it actually went faster
than redub, but after running ‘dub’, it
started going at the same speed as redub

REDUB - PLANNED FEATURES

Dub Registry - Full Rebuild Only

Compilation Time Comparison

DUB REDUB REGGAE + NINJA

REDUB - PLANNED FEATURES

But How Redub went faster than Ninja

On Windows, depending on how many libraries are you
linking (or maybe, even other unknown parameter), the
incremental linker, which is the default for MSVCLinker
actually is able to slowdown your compilation!
Beyond simply “building”, redub also aims to achieve a better
default configuration, it have a configuration based on how
many dependencies there are. Currently, incremental linker
is deactivated whenever there are more than 3 dependencies

REDUB - PLANNED FEATURES

DUB
Community Usage Division

Lack of Understanding: How the D compiler works, how to
organize their package
Dub’s Scope: Every project can have a quite different scope,
this causes a dissociation on everyone’s expectation on what
dub should and should not do
Separate Compilation: When it causes more harm than good
Dub as a Library: Usage is heavily considered when taking
decisions, but it’s use-case is too rare. SemVer should be used
instead of preventing progress, dub is not a compiler.

REDUB - SEMANTIC 1

Semantic 1
Text Parsing

Import Evaluation
Mixin Template evaluation

Strategic usage can avoid 1 and 2 trigger
Easiest to Optimize

Easy compiler performance killer

REDUB - SEMANTIC 1 - IMPORT EVALUATION

Semantic 1 - Irresponsible usage of imports
Don’t do this inside a community package!

400ms for a simple Hello World
package.d (import std) should
be avoided for any non simple
case.

REDUB - SEMANTIC 1 - IMPORT EVALUATION

Semantic 1 - Solving imports
A simple change by adding .stdio after std

Drops from 400ms to 140ms
A compilation aware library
could go even further

REDUB - SEMANTIC 1 - IMPORT EVALUATION

Semantic 1 - Going further with imports
Using C’s stdio printf directly

Drops from 140ms to 12ms
Implementation is very
different, but achieves the same
result for the same program

REDUB - SEMANTIC 1 - MIXIN TEMPLATE

Semantic 1 - Mixin Templates

470ms is spent on Sema 1
It increased codegen time since it is an
absurd example
This is an example on a situation where
Sema 1 can lead to a really bigger
compilation time
Importing that module will waste time

As a main module

As a dependency (notice also Sema 2 here)

REDUB - SEMANTIC 2

Semantic 2
CTFE (Compile Time Function Evaluation)

Default Initializers
Classic Example: std.internal.unicode_tables

Obvious Bottlenecks

REDUB - DEFAULT INITIALIZATION

Semantic 2 - Default Initialization

core.sys.windows.uuid
That is also a big bottleneck on
parallel builds when imports
happen
Public packages usually imports
core.sys.windows causing huge
increase on compilation time

REDUB - CTFE INITIALIZATION

Semantic 2 - CTFE

int a is initialized on compile
time
A calculation that takes a lot of
time happens there
1.52 seconds took as a result of
that
In this case, the bottleneck is
very obvious

REDUB - SEMANTIC 3

Semantic 3
Template Expansion

Compile Time Reflection
Metaprogramming

Triggers a new Sema1 and Sema2 pass
Function Body Evaluation

Can kill your compilation time

REDUB - SEMANTIC 3 - TEMPLATE EXPANSION

Semantic 3 - Effect on compilation time

Template that generates n³ tuples
17.48 seconds on full compilation time
460ms on Sema1 (as reparse has to occur)
1.92 seconds on Sema3
Even if it doesn’t look much on Sema3, the codegen
time heavily increases based on it

DMD with -c -o- DMD with codegen

REDUB - SEMANTIC 3 - STATIC FOREACH

Semantic 3 - Effect on compilation time

Static foreach with simple addition, no
variable creation
1.05 seconds on full compilation time
500ms on Sema3 (as reparse has to occur)
500ms on codegen
As you can see, again, codegen time
increased linearly with Sema3

REDUB - OPTIMIZING HIPREME ENGINE

Optimization Case
Hipreme Engine will be used as an example
Build takes 3.7 seconds for only the main module
This is how it was before any optimization was done

REDUB - SEMANTIC 1 PROBLEM - CTFE TRIGGER

Understanding Semantic 1 problem
Separate Compilation: Rettriggers int v = heavyFn()

Separate All at once

Each dependency importing a module
containing CTFE , will have to reevaluate,
making dub unsuitable for those cases.

REDUB - SEMANTIC 1

Semantic 1 - Solving Semantic 2 trigger
Use static this() for runtime initialization
Use a runtime getter

Separate All at once

Reduced separate compilation time by 3
seconds.
All at once is now only 20ms faster on a
full rebuild.

REDUB - SEMANTIC 1

Semantic 1 - Private Dependencies
If you don’t want to cheat and still keep doing the
CTFE, private dependencies is the way to go

Separate

Create a module which is not imported by
user
Import it inside the function
implementation
Now, CTFE cost is paid only once

REDUB - SEMANTIC 1

Result of applying Semantic 1 optimization
Reduced build time from 3.7 seconds to 2.95 seconds
Look how cleaner it is to understand what is causing
bottlenecks now
Keep in mind that Hipreme Engine already had a fair
amount of build time optimization

REDUB - SEMANTIC 3 - IMPORT ON TEMPLATE

Semantic 3 - Technique for improvement

A case of import being evaluated on
template expansion
Since Sema1 is very small, this module is
perfect to be imported
That is a case of triggering a full Sema 1, 2
and 3

REDUB - HIPREME ENGINE POST SEMA 3 OPTIMIZATION

Result of applying Semantic 3 optimization
Compilation went from 2.95 seconds to 1.9 seconds
Overall result was 3.69 to 1.88 - Cutting almost 50% of
the time required
Graph is even clearer now, making it even easier to
improve

REDUB - SEPARATE COMPILATION OPTIMIZATION

Separate Compilation Optimization
Case: You’ve just added a new library on your root project. This
library is taking a lot of time to build [Remember that it’s 550ms

starting from 0ms]

Solution: Create a library which wraps that new library
and makes it available a minimal API to be imported

TaskWatcher: A module which uses
FSWatch for watching the filesystem and
use Threads for creating no blocking
operation + queue system

REDUB - SEPARATE COMPILATION OPTIMIZATION

Separate Compilation Optimization

REDUB - SEPARATE COMPILATION OPTIMIZATION

Separate Compilation Optimization
Result of putting your module that imports fswatch on a library

Speed Gain: By simply
making it inside a separate
dependency, root goes
from 500ms to 162ms.
Paralell Compilation: You’ll
also get parallel
compilation
Every Unit Matters: When
parallel, it is important to
keep every compilation unit
small to keep the overall
compilation fast

REDUB - SEPARATE COMPILATION OPTIMIZATION

Applying Optimization Concepts
That result was pretty good, but let us improve it

Moved imports to
function body

Opaque type
representation,
so, no module
import needed

Moved private
implementation

to a static
function inside

the method body

Castings to the
actual type

REDUB - SEPARATE COMPILATION OPTIMIZATION

Results of Applying Optimization
Concepts

The end result is that the main
module gone from 550ms to

12ms. Now, that module is
completely free of any kind of

impact from the imported
dependency and user

implementation. The old module
still costs 550ms, but the user

one can be used with completely
freedom.

REDUB - HIPREME ENGINE CURRENT STATUS

Fast Forward of constant applying principles

The results of constant application of that is the
reduction from 3.69 to 0.76 - Cutting almost 80% of
the time required
Now, it is small enough for not needing to focus on
that.

REDUB - FUTURE WISHES

On the Future of D compiler
Parallel Compilation: Although it could be
great, it would not greatly improve UX on
iteration, since I doubt it’s speed would
increase much.
Compiler as a library: Minimal amount
needed, for example, given a path, return
all the modules that are imported (and
their respective path), this would be
enough to supply only the required files
to build and then tool could reuse .obj

Compiler Daemon: When having compiler as
a library being used, an initial compiler
daemon could be achieved by library users.
The tool could supply which file had changed
while the library supply its imports, so, the
tool could know which files to build.
Parallel Generation: The semantic passes
may be single threaded, since it is how it
stores information on what to build, but
maybe the generation itself could be
parallelized

The other way around: LDC has a way to store it’s IR on PC. This greatly
increases the compilation speed on the next run. DMD could do something
similar, like, the user supplying object files directory and which files had
changes, so, DMD could reuse those existing object files and ignore code
generation of the ones which weren’t supplied as changed and aren’t found on
the dependency chain

REDUB - FUTURE WISHES

On the Future of REDUB

redub.json: When having that file
present, it would use instead of
dub.json, providing better
flexibility and a migration path for
new features, no new format
Feature System: HBuild from
Hipreme Engine but specified in
the declaration
dub.selections.json generation?: I
don’t really like that idea, this
could heavily depend on how
messy it gets with users

Replacing Dub: I don’t really care
or want that it replaces dub. This
would greatly reduce it’s
autonomy
Redub Daemon: Redub may use a
filewatcher to build on project
changes, but it’s viability and
integration with compiler library is
still being considered

REDUB - QUESTIONS

QUESTIONS ?

