
C++ interop

About Me

• I like C/D/C++
• SAoC 2023
• Researching into network bufferbloat

Targets for this talk

• Inspired from my experience when I first joined.
• Basic D programmer

• Provide an easy path for the beginner D programmer to interoperate with C++
• To preach the most basic level of understanding with interoperating with C++
• Knowing your environments
• Knowing your use cases

• You Experts
• Reveal the state of using the STL in D
• Stumbling blocks
• Way forward

Truth About C++ interoperability

• C++ interoperability is a global topic.

Languages actively interoperating with C++

• Rust
• Swift
• Zig
• Python
• etc.

Their Approach ????

• Write wrappers and some other confusing stuff.

D’s approach??

• matching C++ name mangling conventions
• matching C++ function calling conventions

• matching C++ virtual function table layout for single
inheritance

Walkthrough of the execution of your program.

• Compiler compiles your code
• Stack and your heap allocated. (if there be need)
• Stack very important for this work

• Generates an assembly instruction based on your hardware
instruction set architecture

• Instructions go through the fetch decode execute cycle

Basic Rule

• THINK D!

Backbone of interop

• Semantics analysis

• Any (C++/D) interoperable routine must semantically agree

C++ libraries

• Majority of the C++ libraries are implemented with classes
• C++ Classes are value types
• D classes are reference types
• D structs are value types
• Use your structs

Thenn..

• KNOW YOUR D STRUCT!

• @disable this()
• MSVC allocates on default initialization in debug mode
• Just avoid this especially on windows

• Constructors
• Can call C++ copy constructors

• Operator overloads
• destructors

Move constructors????
• If there be a need for an internal move operations, can use the

phobos move function.

• But you cannot move ctors and functions.

C++ class – me.cpp

D counterpart struct – you.d

Let’s link and execute

• g++ -c me.cpp
• ldc2 you.d me.o –L-lstdc++

• ./you

Oooopsss… Segmentation fault

Stack frame for D’s main – x86_64 ISA

C++ this(int) call stack

C++: movq -8(%rbp) , %rax

D : leaq -1(%rbp), %rdi

Trace your stack

Let’s call 2nd constructor

Let’s link and execute

• ldc2 you.d me.o –L-lstdc++
• ./you

• Execution success
• Just run!

No seg fault this time?

Consider C++ this(int, int) stack frame

Let’s make this constructor call

D this(int, int) stack frame

C++ is not moving any value from the address offset the base pointer.

Takeaways

• This is why….

1. C++ can pass two member pointers
2. D can pass 4 integers
3. And still get interoperable results

It’s mainly a memory passing routine and that should be most
factored

Another takewawy

• So always make room for whatever C++ wants to
come and do in the call stack.

• Treat C++ like a visitor coming to your house and
wants to sit down. Give your visitor the chair.

It comes with a tradeoff

Safety

RAII in D when C++ allocated heap is involed?

• Some C++ libraries do not emit their destructors in their symbol
table.

• Some of these libraries allocates on initialization
• RAII takes care of destroying heap allocated resources in C++

when object is constructed in the stack frame of the C++ main.
• What about D??
• Let’s find out!

C++ class : No destructor

D struct

NB: for this test, Linux is most reliable

• ldc2 D.d CPP.o –-fsanitize=address –L-lstdc++

• ./D

• ….. Running.

Obviously…..

• Summary: AddressSanitizer: 4 byte(s) leaked in 1 allocations

Nowww, we call destroy

Sadly

• Summary: AddressSanitizer: 4 byte(s) leaked in 1 allocations

THE C++ STL

Pragmatic tradeoffs

• Reimplement ??

• Interface it and use from D?

Runtimes

• Linux is your best friend
• Especially when linking with gcc compiled binaries
• You get most of the symbols you desire.
• Symbols are linkable
• Interfacing is quite easy due to the simplified CXX-itanium ABI

Runtimes

• Linux might betray you a little
• When compiling with clang compiled binaries.
• libc++ libraries do not like to handle deallocations with the base class’

destructor then default the base destructor
• Rather like to do their destructions in the abstract classes.
• If you do not keep track of those, can leave your code vulnerable to leaks.

Runtimes

• Windows is that cool friend who decides when to be good to you.
• Visual C++ mangling scheme is very complex
• Little bit hard to debug when finding it difficult to pick your symbols.
• Cannot walk through the visual C++ mangling now, we will run out of time

• Few trace points when finding it hard to debug your symbol interfacing
• Look out for your access modifiers

• Public and private fields are mangled differently
• Classes and structs are mangled differently
• Uses a rather systemic numbering system for types when working with templates but you

can easily miss

Runtimes

• macOS is your worst enemy
• macOS-12

• Emit some functions as local text symbols (t)
• Hence not linkable

• macOS-13
• Those functions emitted as local text symbols in 12 are emmited as global(T)
• linkable
• Then some other symbols emitted as global text symbols in 12 are then not

emitted.
• macOS-14

• Actually doesn’t care about you. Just emits what it wants and what it doesn’t

Work done

• Moved from druntime.
• Current dir : https://github.com/dlang/stdcpp
• Currently Managed in a dub package
• Containers worked on
• Vectors
• List
• Set only works on linux
• String

Runtimes: Linux , Macos, Windows

Primarily C++ compiler targets

• clang++/MSVC on windows
• clang++ on macOS
• clang++/ g++ on linux

Instantiating templates for our classes

Templates instantiations

• We can instantiate our template classes for all fundamental
types.

• So we can use it for chars, doubles, floats etc.

Types are not only fundamental

In our C++ file for symbols

• Definitely, we will need our

struct A;
template class std::vector<A>;

Should we do this for every aggregate?

• Aggregates name can be anything
• Infinite number of possible names for your aggregates.

A simple demo

Std::String test

list test

Vector test

Set test

