
Software as Investment
Reconciling added value and nesting

Dconf 2024 London — Guillaume Piolat
BA

● Was inspired by Walter's posts: from C++ developer
to D entrepreneur in 2015

● First product in late 2015 made just 2 sales.

What is Auburn Sounds?

10 years later
- still just me
- 9 launches, 6 products
- OK-ish market-fit
- A normal boring business

resellers
sales
support
marketing
blue button or red button
invoices
competition

Why D for a B2C product business?

Why D for a B2C product business?

1. Iteration is good for product success

Why D for a B2C product business?

1. Iteration is good for product success

2. D nice at iterations

Why D for a B2C product business?

1. Iteration is good for product success

2. D nice at iterations

3. That makes D good for product success

● Programming still the top activity (labor-intensive)

What is different in solodev?

Yes, that’s also your job.

● Programming still the top activity (labor-intensive)

● What is different is seeing its effect on Added Value

What is different in solodev?

Yes, that’s also your job.

Code quantity at Auburn Sounds

All products
~50 kLOC

Open source
~150 kLOC

Dead prototypes
~80 kLOC

(unmaintained)

Code quantity at Auburn Sounds

All products
~50 kLOC

Open source
~150 kLOC

Code quantity at Auburn Sounds

Product

Core
~150 kLOC

Product
Product
~8kLOC

ProductProduct

Code quantity at Auburn Sounds

Product
Core

Product

“That one product cost
$34k to make
and brought $21k
over 5 years.”

Code quantity at Auburn Sounds

Product
Core

Product

“That one product cost
$34k to make
and brought $21k
over 5 years.”

Estimated value is:
 ṽ(Product) = $21000 - $34000 That was easy!

Code quantity at Auburn Sounds

Product
Core

Product

“...and our Core library
 cost $Z and made $W”

Said no one ever.

“That one product cost
$34k to make
and brought $21k
over 5 years.”

What about this case?

Core Product AProduct B

 Product AProduct B Core

We can estimate the value of A = ṽ(A)
We can estimate the value of B = ṽ(B)

 Product AProduct B Core

But what is the estimated value of Core ṽ(C)
and how long should we work on it?

 Product AProduct B Core

But what is the estimated value of Core ṽ(C)
and how long should we work on it?

Let’s create a toy theory
that can express nested value.

Software Artifacts

Let’s reason on any of the following:

■ an octet

■ a for loop

■ a function

■ a class object

■ a whole product

■ a product portfolio

Software artifacts

Marked as capital letters in this talk:
A, B, C

f
for
class F { }
module xxxx;
etc…

wholefile.d

wholeproject/

Given an artifact A :

● extent(A) is its sequence of bytes/unit symbols

○ A and B are equal if extent(A) = extent(B)

If two companies have the same artifact
we’ll count its value together

Software artifacts: Extent

f o r f o r=

● B is inside A if it’s a subsequence.

Software artifacts: Subsequence

f o rf o is inside

● A + B is the juxtaposition of artifacts

○ eg: 2 products A and B = a portfolio A + B
○ possibly overlapping

Software artifacts: Sum

A B C

A + B + C

Software artifacts: Postulate of nested value

A

If and only if A and B are independent.

B

Software artifacts: Postulate of nested value

A B

The postulate being that A without B and B without A cleanly exist.

Software value: Definition

Given a software artifact A :

● v(A) is “all value derived from A existing”

Software value: Definition

Given a software artifact A :

● v(A) is “all value derived from A existing”

John Colvin, Dconf 2022

“

Software value: Definition

Given a software artifact A :

● v(A) is “all value derived from A existing”

● If v(A) > 0 then it’s an asset
● If v(A) < 0 then it’s a liability

Software value: Definition

Given a software artifact A :

● v(A) is “all value derived from A existing”

● If v(A) > 0 then it’s an asset
● If v(A) < 0 then it’s a liability
● To have this result, we consider time, money and

attention as interchangeable.

Software value: Successful software 📈🚀

If maximizing profit:

● Create artifacts with positive v
● Do NOT create artifacts with negative v

Much like a stock, or financial equity, something below zero isn’t good.

In 300 years, someone unearth your
JSON9 parser DUB package and build
a 100T$ venture out of it, propelling
humanity into a new space age.

Case study: Accidental Space Age

In 300 years, someone unearth your
JSON9 parser DUB package and build
a 100T$ venture out of it, propelling
humanity into a new space age.

When the DUB registry stops
responding, a hero emerges that will
change the destiny of civilization…

Case study: Accidental Space Age

In 300 years, someone unearth your
JSON9 parser DUB package and build
a 100T$ venture out of it, propelling
humanity into a new space age.

Let J be the JSON9 parser.

 v(J) = 100T$
⋙ v(J) is unknowable without seeing the deep future.

Case study: Accidental Space Age

J = a
JSON9
parser

In 300 years, someone unearth your
JSON9 parser DUB package and build
a 100T$ venture out of it, propelling
humanity into a new space age.

⋙ v(J) is unknowable without seeing the deep future.

⋙ We’ll call ṽ the estimate of v and move on

Case study: Accidental Space Age

In 300 years, someone unearth your
JSON9 parser DUB package and build
a 100T$ venture out of it, propelling
humanity into a new space age.

v(J) = 100T$ but ṽ(J) = 0

Case study: Accidental Space Age

What goes into v(A)?

Value of artifact A
 for entity E called

What goes into v(A)?

v(A) is all the value of A, for ever, for everyone

● Gain and losses from A existing for the business
(eg: sales, velocity, opportunities…)

● Gain and losses from working on A
(eg. wages, pleasure and pain, work opportunities, expertise)

● Gain and losses from operating the software
(utility, price paid, brain damage…)

● etc…

What is v(A)? Other definitions.

v(A) is a single monetary number, expressed in $$$

Case study: Totometrics and Ben the Contractor

“Please
fix a bug in our JSON

parser for $500”

BEN THE FIXER

Case study: Totometrics and Ben the Contractor

“I will do it instantly,
gain $500,

 learn nothing from it,
and we’ll never meet

again.”

BEN THE FIXER

Case study: Totometrics and Ben the Contractor

T = TotoMetrics
the Scrapping Company

J = a
JSON
parser

B = Ben the
contractor

“Please
change J to

J+F for
$500”

BEN THE FIXER

F = the JSON
parser fix,

independenf of J

T = TotoMetrics
the Scrapping Company

Case study: Totometrics and Ben the Contractor

J = a
JSON
parser

“We thought at the meeting that:

F = the JSON
parser fix,

independenf of J

because it sure looks like -$500 right now”

Case study: Totometrics and Ben the Contractor

Decision for the business:

Considering: then

So:

Case study: Totometrics and Ben the Contractor

J = a
JSON
parser

B = Ben the
contractor

“In Software as Investment™ terms,
I’ve no real exposure to J, only F.

Glad I went to that training.”

BEN THE FIXER

F = the JSON
parser fix,

independenf of J

Case study: Totometrics and Ben the Contractor

…which makes sense since only TotoMetrics has exposure to the changed software.

$500

Main Equation of Software Change (ESC)

Most decision problems converge on:

Main Equation of Software Change (ESC)

Most decision problems converge on:

A “build versus buy” decision could be:

Main Equation of Software Change (ESC)

Most decision problems converge on:

Whoa!
It is worth it to do the change,

if it’s worth it to do the change.
Never thought about that.

Main Equation of Software Change (ESC)

Most decision problems converge on:

- tautological theory that shuffles numbers around (true by definition)

- the value of all this (if any) would be… posing the right terms and then
using a cost model eventually

- Has the non-selfish version uses?
- Does it even map reality well?

Types of software: Uneven value split

Workforce

Shareholders

Users

Ethical
activity

Bad
investment

SweatshopRip-off

Tautologies are what economists do instead of lunch

Tautologies are what economists do instead of lunch

Friedman - 1966

Case study: Bayesian extension

O’Kernel, the signal processing
researcher

Case study: Bayesian extension

O’Kernel, the signal processing
researcher

“Arrr, I be
implementin'

that, aye!"

A promising image resizing method.

Case study: Bayesian extension

K = O’Kernel
the Signal Processing Researcher

R = the
Resizing
method

“I wonder if ?”

Case study: Bayesian extension

K = O’Kernel
the Signal Processing Researcher

R = the
Resizing
method

“I wonder if ?

The new thing might be a right
bungle of a disaster.”

Case study: Bayesian extension

Value of R if event e happens

Value of R if event e does not happen

Case study: Bayesian extension

K = O’Kernel
the Signal Processing Researcher

R = the
Resizing
method

Event b = the
new method

is better

and by application of the Bayesian rule:

Case study: Bayesian extension

K = O’Kernel
the Signal Processing Researcher

Introducing an example cost model for real world use.

 “My cost model be:
 software cost = writin' it + maintainin' it
 There be treasure to be found, if the research turns
 out bountiful!”

Case study: Bayesian extension

K = O’Kernel
the Signal Processing Researcher

Introducing an example cost model for real world use.

 “My cost model be:
 software cost = writin' it + maintainin' it
 There be treasure to be found, if the research turns
 out bountiful!”

no need to keep R if failure

Case study: Bayesian extension

K = O’Kernel
the Signal Processing Researcher

Within this cost model, the formula for unsure reward is:

 Product AProduct B Core

Pricing dependencies

 Product AProduct B Core

To compute the value of C an existing artifact…
estimate the -value of C being deleted.

Pricing dependencies

That Take-away slide

- COCOMO method considers the cost of software.

That Take-away slide

- COCOMO method considers the cost of software.

- You can instead consider its value on a 1D axis, also nestable,
using such a language (conflating time, effort, and cost)

That Take-away slide

- COCOMO method considers the cost of software.

- You can instead consider its value on a 1D axis, also nestable,
using such a language (conflating time, effort, and cost)

- Accountants consider IP as equity (assets minus liabilities),
owned, but doesn’t nest its value nor consider it as commons.

That Take-away slide

- COCOMO method considers the cost of software.

- You can instead consider its value on a 1D axis, also nestable,
using such a language (conflating time, effort, and cost)

- Accountants consider IP as equity (assets minus liabilities),
owned, but doesn’t nest its value nor consider it as commons.

- But “exposure” v(A) might well be a more useful concept than
“ownership”

That Take-away slide

- COCOMO method considers the cost of software.

- You can instead consider its value on a 1D axis, also nestable,
using such a language (conflating time, effort, and cost)

- Accountants consider IP as equity (assets minus liabilities),
owned, but doesn’t nest its value nor consider it as commons.

- But “exposure” v(A) might well be a more useful concept than
“ownership”

- You’ll certainly want a cost model to make that useful

Questions?

That Bonus slide

- We do have language support for value annotations!

// TODO

means: “this probably has > 0 value, since it’s worth it to work on it
further”

That Bonus slide

- We do have language support for value annotations!

// TODO

means: “this probably has > 0 value, since it’s worth it to work on it
further”

deprecated

means: “this probably has < 0 value, since it’s worth it to delete it”

