
We need a new GC
Advancing GC technology for D into the modern age

Dconf ‘24 Amaury Séchet (@deadalnix) Steven Schveighoffer (@schveiguy)

The current GC is not state of the art

● The current GC is based on mostly the same code that was present in
D1/Tango

● We have had several improvements:
○ Precise scanning – no longer as important with 64-bit addressing
○ Forked scanner – Optional performance improvement, but still from Sociomantic days
○ Multi-threaded scanner – Default scanner, Utilizes CPU more efficiently

● Scanner is not optimized for today’s architectures
○ Binary search for blocks
○ Too many touches of various pages per mark
○ Does not take enough advantage of modern addressing
○ Does not try to reduce TLB pressure

Implementation limitations

● All allocations are done from a global structure
● A global lock protects threads from invalidating memory allocation

○ No allocations while collecting
● All threads must be stopped during scanning (except for forking collector)

○ Fork creates a write barrier on all memory to perform COW functionality.
● Implementation is tied to druntime

○ All type data is fetched via TypeInfo
○ Array runtime is dependent on implementation details of GC

Replacing C allocator with our allocator – in user code

● Many people use the C allocator as a “faster” allocator.
○ But you still have to pin the memory if it might contain pointers, or you might accidentally free

something.
● D’s allocator should be just as fast, and performant.
● std.container.array.Array

○ Allocate with C malloc, pin in the GC – Shouldn’t be necessary!
● std.typecons.refCounted

○ Allocate with C malloc, pin in the GC – Shouldn’t be necessary!
● std.stdio.File

○ Allocate with C malloc, pin in the GC – you know the drill.

Only advanced features for 64-bit arch

Our GC takes advantage of 64 bit addressing

● All current archs use only 48 bits for addressing (256TB of address space)
● Using memory mapping, we can plan out how memory is laid out to take

advantage of hardware architecture
● We can use sparse data structure

○ Uses a lot of address space, but most of it is virtual zeros

How memory HW and OS work

Transparent Huge pages

● Huge pages (2MB, 1GB) are profitable because one entry in the TLB maps to
more memory.

○ TLB space is finite, we can cache more memory in less space.
○ Temeraire shows that this is very profitable for programs using a lot of RAM.

● We try to cluster allocation on aligned 2MB blocks.
● When enough consecutive 4k pages are used to form a 2MB huge page, the

OS can swap these pages for a huge one transparently.

All zero memory page table

● Each level points to the same next level
page

● All pages point to a read-only zero page
the kernel uses for all processes

● Entire memory can be described using 4
4KB pages

Add one page that is not zero

● Level 0 always one page
● Most entries still point to

zero page
● Only one path leads to the

non-zero page
● More efficient to keep

modified pages together

How the new GC Works
Part 1: Large allocations

Use own mutex to avoid initialization or allocation

● We want our mutex implementation to never allocate.
○ For obvious reason, this would be a problem within the GC.

● We want all zero to be a valid state for the mutex.
○ We want to use virtual zeros to provision static data structures that will only be materialized if

used.
○ Some data structures in the allocator need mutexes, so all zero mutexes need to be valid.

● When not contended, atomic operations are enough to take/release the
mutex.

● Under contention, if a thread needs to be paused, we the kernel’s futex API.

Region allocator

● Responsible for getting address space from the OS
● Requests allocations of 1GB at a time

○ All memory requests from OS are virtual all-zero pages
● Track ranges of memory that are not used in a Red-black tree
● 2 regions – one for pointer-containing blocks, one for non-pointer blocks
● Region allocator provides chunks of memory in 2MB blocks

Blocks: 2MB pages

● Blocks are managed by a Page Filler
● Requested from the appropriate region allocator, keeping pointer-containing

blocks separate from pointer-free blocks
● Tracked in heaps ordered by longest-free-range and number of allocations
● Heaps divided into small allocation heaps, and large allocation.

○ Track which heaps have any available blocks.
○ Only 32 heaps, so constant bitmask operation to find best non-empty heap
○ Heaps operations take amortized constant time

● Selecting the block to use takes amortized constant time

Metadata Tracking

● Some allocations dedicated to tracking metadata about all allocated memory
● BlockDescriptor

○ Keeps track of allocated pages (which ones, and how many)
○ Remembers the longest free page run
○ Allocation class (which bucket of longest free range)
○ How many allocations in the block
○ Dirty pages (which ones, and how many)
○ Generation (to help keep descriptors close together)

● All metadata is allocated outside normal allocation path, never freed
● Unused metadata goes into a heap (ordered by generation/address)

Pairing heap data structure

● Standard heap with N children per node
● When inserting a new child:

○ Better than the root? It becomes the new root
○ Worse than the root? It goes into an auxiliary heap

● Whenever a child is added to the auxiliary heap:
○ If count(Heapaux) is even, perform N merges, where N is the number of trailing zeros
○ In practice, this amortizes to 1 merge per insertion.

● When removing the root:
○ Perform a merge on the root’s children (generally 1-2 children)
○ Perform a merge of the new root with the aux list root

Pairing Heap Demo!

Allocation classes

● We bucket allocation sizes (in pages) in classes.
● Growth rate from one class to the next must be

○ Greater than 1 (or it doesn’t grow)
○ Smaller than φ, the golden ratio, to ensure that space left behind can eventually be reused.

● We settled on size classes with two bits of precision.
○ Each time we use one more bit, we grow the step between classes.
○ 1, 2, 3, 4, 5, 6, 7, 8
○ 10, 12, 14, 16
○ 20, 24, 28, 32,
○ 40, 48, 56, 64
○ 80, 96, 112, 128
○ 160, 192, 224, 256
○ 320, 384, 448, 512 (empty block, we release it to the region allocator).

● In total, 31 allocations classes are used.

Page Filler

● The page filler gets blocks from the region allocator and allocates pages out
of them.

● There are 4096 pre allocated page filler as static data.
○ The initial state of a page filler is all zeros, so it doesn’t use any actual memory.
○ The page filler is selected based on the core the the thread runs on.

■ This ensures no contention, unless the OS reschedules the thread mid allocation.
○ When a new page filler is used, the OS automatically provides memory for it.

● The page filler maintains a set of heaps of blocks for each allocation class.
○ Favor blocks with shorter free ranges to give the larger runs the opportunity to grow.
○ Favor blocks with fewer allocations as they are more likely to be freed.

Large allocations

● Large allocations are done at a page granularity.
● They are used when allocating > 14kB
● The allocation class required is computed and the correct heap selected

○ This creates some slack. This on purpose. Preferring best fit tends to create more very small
runs than the application demands.

○ For instance, a 21 page allocation will look into buckets starting with the 24 pages one.

Large allocation: Extent

● An extent tracks an allocation of any number of pages (page-level
granularity).

● Allocations less than 2MB are allocated using the Page Filler heaps, finding
the best matching block

● An extent “descriptor” uses 128 bytes to describe everything about a large
allocation.

○ Allocated and never freed, like Block Descriptors

Huge allocations

● Allocations larger than 2MB, requests consecutive new blocks from the page
filler

● Last page can be filled with other smaller allocations if there is room.
● Should be deprioritized for filling, as freeing one large allocation can return a

large amount of used memory to the system.

Reverse lookup of allocations

● When allocating, we maintain a 2 level radix tree for reverse lookup.
● Level 1 is a 2MB buffer of static data filled with virtual zeros containing

pointers to the next level in the radix tree.
● Level 2 is made of 2MB buffers containing pointer size page descriptor, that

contain information about what’s allocated on a given page.
● The whole data structure is lock free and can be accessed by multiple threads

at once.

Page descriptor

Information about the allocation behind a pointer

Procedure to free large allocations

● Use the radix tree to find the extent, the block and the page filler.
● Clear the page descriptor from the radix tree.
● Remove the block from its heap in the page filler.
● Free the pages in the block, and recompute associated metadata.
● Reinsert the block in the appropriate heap, or release it to the region allocator

if it is now empty.

Part 1: The end

?

We need a new GC
Episode II

Advancing GC technology for D into the modern age

Dconf ‘24 Amaury Séchet (@deadalnix) Steven Schveighoffer (@schveiguy)

How the new GC Works
Small allocations

Size classes

● Similar to allocation classes used for blocks.
● Uses 2 bits of precision for a total of 38 size classes.

○ 8, 16, 24, 32, 40, 48, 56, 64
○ 80, 96, 112, 128
○ 160, 192, 224, 256
○ 320, 384, 448, 512
○ …
○ 10240, 12288, 14336

● Balances internal fragmentation (space lost due to requested size not
matching the size class) and external fragmentation (empty slot in slabs due
to insufficient demand).

● Extent class is 0 for large, otherwise, size class + 1
● https://github.com/snazzy-d/sdc/blob/master/docs/sizeclass.md

https://github.com/snazzy-d/sdc/blob/master/docs/sizeclass.md

Slab

● A slab is a special kind of Extent that contains several small allocations.
● It also contains a bit field to know which slots are allocated.
● If slot count allows for it, we have another bit field to know whether a slot has

associated metadata (append support, finalizer).
● Slab with more than 16 slots are considered “dense” other are “sparse”.

○ A slab with 16+ elements is likely to be long lived or immortal.
○ Dense slabs are allocated on their own set of blocks.
○ Sparse slabs are mixed with large allocations.

● Slabs are allocated from the Page Filler, just like large allocations are.

Arena and Bins

● There are 4096 pre allocated arenas with virtual zeros. They contain:
○ One bin per small size class.
○ A Page Filler.

● When needed an arena, and it’s page filler, is picked based on the CPU core
used by the thread.

○ This ensures no contention unless the OS reschedule the thread mid allocation.
● Each bin contain a heap of the slabs for a given size class which are not

completely full.

Page descriptor

Information about the allocation behind a pointer

Find the index of an allocation in a slab

● For each size class, we precompute M and s such as M / 2s ≈ 1 / size
○ We chose M and s such as rounding works out for any possible offset in a slab.

auto computeIndex(void* ptr, PageDescriptor pd) {
 auto page = alignDown(ptr, PageSize);
 auto slab = page - pd.index * PageSize;
 auto offset = ptr - slab;

 auto b = binInfos[pd.sizeClass];
 return (offset * b.multiplier) >> b.shift;
}

Thread cache

● Each thread has a Thread Cache living in thread local storage.
● The thread cache contains a bin for each small size class.

● When allocating, we look into the cache first.
○ If there isn’t a suitable element, we refill the cache via the arena.

● When freeing, we try to put the element back into the cache.
○ If the cache is full, then we flush it to the bin.

● Batching operations in the arena ensure fast operations most of the time.

Thread bin management

● Periodically, we “recycle” a bin.
○ If we refilled the bin since last time, we increase the batch size for that size class.
○ If the low water mark didn’t reach 0, we flush some of the elements and reduce the batch size.

● At the end of the recycling process, we reset the low water mark for the bin.
○ When we allocate from the bin and are at the low water level, we reduce it.

● This process ensures that the usage of the thread cache adapts to the
behavior of the application at run time.

● Elements in the thread cache appear to be allocated from the perspective of
the rest of the GC.

Thread Bin

Fast path touches very few pages

● The data about the thread bins are all kept together. If there is a suitable
element in them, pick it, return, done.

● That’s only 1 page touched for the allocation fast path!
● We cache entries for the first level of the radix tree in the thread cache.

○ We cannot skip the last level lookup.
○ But we end up staying in the thread cache for the first level most of the time.
○ The cache has 24 entries, which maps to 24GB of address space. If your thread has more

than that that is very hot, then what are you doing?
● Then, if there is room, we put the pointer back in the thread bin.
● That’s only 2 pages touched when freeing on the happy path!

How the new GC Works
Appending and finalization

Appendable and finalizers

● Allocations/arrays might need to be finalized
● Appending to an array should grow in the allocation if possible
● Need to store a finalizer and a “used” size.
● Druntime always stores these in the allocated space.
● New GC stores data based on the size of the allocation.

Appendable and finalizers

● Large allocations are easy
○ Plenty of space in the Extent record itself, most GC metadata not needed (marking bits, etc.)
○ Store finalizer, used size directly in the Extent
○ Can extend a large Extent without having to touch allocated memory.

● Slabs do not have enough space in the extent to store a pointer per slot
○ 8 bytes needed to store finalizer pointer
○ Store this inside the allocation – at the end
○ 8-byte allocations are never appendable – always reallocate.

● Store “unused” space instead of “used” space.
○ The more space used, the less space we need to store the size.
○ Can fill up the entire allocation, just remove the metadata

Appendable and finalizers - slab metadata

● Max alloc size for slabs is 14336 – only requires 14 bits for “unused” space
● We have 16 free bits in the finalizer pointer! Stuff it in there.
● Set a bit in the Slab Extent to flag which slots have metadata
● With Finalizer present, must always use all 8 bytes
● Without Finalizer present, can use one or two bytes for “unused” space
● 2 flags to determine what state we have – 14 bits + 2 bits for flags.

Finalizing an allocation

● If metadata is present, and finalizer not null, pass finalizer and used size into
handler function

● SDC handler just calls the finalizer with the pointer and valid size
● Druntime hook must do something different (that pesky TypeInfo…)

How the new GC Works
Garbage Collection

Garbage collection

● The GC uses stop the world, parallel, mark & sweep garbage collection.
● The thread invoking the collection process stops all other threads.
● Some preparatory work is done, such as allocating buffers for mark bits.
● Several worker threads are started and marking process begins.
● We then go over all the initialized arenas, go over all blocks, and free all

unmarked allocations.

● All in all, fairly standard mark and sweep stuff!

Stopping the world

● We hijack pthread_create to register all threads in the GC and setup signal
handling.

● We send SIGPWR to suspend a thread, SIGXCPU to resume.
○ These signals have been used by Boehm for a long time so we assume they are a “de facto”

standard.
● We do not want to suspend a thread in a middle of a complex operation.

○ Druntime solves this with a global lock, but we do not want that either.
○ We introduced a busy state to thread where they cannot be suspended.

● When threads aren’t busy, the signal handler for SIGPWR simply uses
sigsuspend to wait for SIGXCPU

○ Because we use SA_SIGINFO, the CPU state has been pushed on the stack so we can scan
as this.

Hijacking pthread_create to register threads

● We define our own pthread_create function in the GC. The linker picks this
one over the system’s.

● This function does the preparatory work for the thread to be initialized
properly for the GC to manage.

● It then calls a trampoline (function pointer) initialized to do the following:
○ Resolve the system’s pthread_create using dlsym.
○ Redefine the trampoline with the system’s pthread_create.
○ Forward the call to the system’s pthread_create.

Busy state

● When doing critical operation that cannot be suspended, the thread enters the
“busy” state.

● When the signal to suspend is received by a busy thread, the signal handler
sets the thread for delayed suspension and resume execution immediately.

● When the busy state is exited, the thread checks if delayed suspension was
requested.

○ If so, the thread pushes the CPU state on the stack and suspends itself using sigsuspend.
● More complex in practice: this has race conditions galore.
● But we can prevent thread suspension at an undesirable time without any

kind of locking mechanism!

Mark phase: Overview

● One thread is created for each core on the machine.
● Thread wait for work to be put on a worklist. Work consist in a range of

memory to scan for pointers.
● The main thread start feeding the worklist with global segment, suspend

thread’s stack, and various other roots, then wait itself on the worklist.
● When the worklist is empty, and all other threads ran out of work, the thread

returns.
● By that time, every alive allocation is marked.

Mark phase: Worker threads

● When the worker’s worklist is empty, it picks 1 range on the shared worklist.
● The worker then goes over each potential pointers in the range.

○ It first does a bound check to see if it is in the range of heap addresses.
○ If it is, it does a lookup in the Extent map to find what’s there.
○ If there is a hit, the worker marks the allocation.

● After marking, if an allocation contains pointers, the worker will add it:
○ If its worklist is empty, it add the range in it.
○ For large allocations, it adds the new range to the shared worklist.
○ For small allocations, it add the new range to its own worklist. This allows the worker to blast

through graphs of small objects.
○ If the worker’s worklist grows bigger than 16 elements, it gets partially flushed in the shared

worklist.

Sweep phase

● We go over all initialized arenas, over all blocks in these arenas, and over all
extents in these blocks.

● We free all the allocations which are not marked.
○ If they have one, we run the finalizer.

● If the block is now empty, we give it back to the region allocator.
● If the block contain more than 16 dirty pages, we purge unused pages from

the block.
○ They turn back into virtual zeros.

● Good job! Now we can restart the world!

Druntime Integration
Getting SDC and DMD to play nice

Hooking SDC GC from Druntime is… complicated

● SDC GC does not have access to druntime
● No understanding of TypeInfo
● Supplies its own scheme for array metadata/finalizers
● qalloc function returns implementation details of the Druntime GC, but is a

public interface
● Odd API functions required (e.g. collectNoStack)
● SDC ABI is different from DMD’s!

Migrate Druntime array runtime into GC

● How to manage array “used” size is now GC dependent – must now ask the
GC to do all the work.

● New type ArrayMetadata which becomes the interface to update the array
used size.

struct ArrayMetadata {
 ... // private fields
 void *base();
 size_t size();
 size_t _gc_private_flags(); // GC specific flags
 bool setUsed(size_t used, size_t existingUsed = ~0UL);
 bool contains(void *ptr) const @trusted;
}

Remove implementation details from interface

● GC interface functions accept TypeInfo
● DRuntime GC malloc uses TypeInfo for precise scanning bitmap and

calling finalizer
● Nothing else effectively uses TypeInfo, even if it is passed

○ For example, extend accepts TypeInfo but ignores it
● But all allocation hooks are now templates!

○ Extract the pointer bitmap from the compiler, pass it directly. We can eliminate RTInfo.
○ Have a generic callback data pointer for finalization. But we still use TypeInfo here

● Deprecate qalloc function. ArrayMetadata is now the API for arrays.
● STRUCT_FINAL bit no longer part of API, but used internally by Druntime.

Miscellaneous hook problems

● Most must be extern(C) to be ABI compatible
● GC is not directly referenced from code, so there must be a trick reference to

avoid the linker from pruning it.
● Had to add some extra hooks to druntime (e.g. pre/post stop the world) to

implement proper thread stopping from SDC
● Class finalization does not fit with SDC scheme – the finalizer pointer is part

of the classinfo at the front. So we store a “finalizer” of cast(void*)1

Future Possibilities
What else can we pile on?

Bohem’s short pauses.

● During the mark phase, add write barriers over the allocations that contain
pointers.

○ This can be done making them write protected with mprotect
○ Alternatively, we can use the dirty bits the CPU fill for us in the page table, but OS API to

access these are especially bad and high overhead.
● Stop the world.
● Rerun a mark phase, using the dirty pages as a starting point.

○ This is typically very short, because almost everything alive is already marked.
● Resume the world, collect.

Replacing C allocator with our allocator – for all code

● C code in pre-built libraries would now also allocate using the GC
● Theoretically, you would no longer have to worry about pinning memory you

are passing to a C function to keep.
● Still experimental, does not work properly when combined with Druntime.

Miscellaneous items

● PRs for DMD to enable a dub package to try the GC.
● Support more platforms (Windows and OSX are priorities).
● Tweak heuristics based on real world feedback.
● Telemetry and other statistics.

Part 2: The end

?

