
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

The Case for Graphics
-- in DLang: Part 2 - Tech Demo

with Mike Shah

14:30 - 15:00 Fri, Sept 19, 2024

30 minutes | Introductory Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

Talk Abstract: The D programming language and ecosystem provides many
modern features which can help give developers a competitive advantage
during the software development lifecycle. In this talk I will discuss how D
provides a competitive advantage for graphics application development (e.g.
games, rendering), where any reduction in iteration time can improve outcomes.
As an example, when creating an art style, having systems allowing rapid
iteration can help improve visual fidelity, both in aesthetics and correctness of
the application. Throughout the talk I will showcase visual examples, developed
in a summer, that show off a graphics engine built completely in the D
ecosystem. Topics will include: a hot reload system, job system (using
concurrency), and showcasing the architecture of a small graphics engine. This
talk follows up a previous Dconf Online 2024 talk in which I make a case for
using D for graphics programming – this time showing you the results
(attendees need not have watched the previous talk). 3

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

4

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

5

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

D Community Announcement:

University students are learning and
using D in my Building Game Engines
course at Yale University! Hooray!

It’s the right tool for the job!
[See last years DConf talk from myself
and students why]

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks
https://www.youtube.com/watch?v=V2YwTIIMEeU
https://www.youtube.com/watch?v=V2YwTIIMEeU

Last Time (Part 1)
We discussed glfw binding, a Bunny,
discussed Multiple Rendering Targets

6

DConf 2024 Online (1/2)

7

● This is a ‘part 2’ talk of my
DConf 2024 Online talk

○ https://www.youtube.com/watch
?v=8GV_TuYk3lk&t=11766s

● Don’t worry though -- part 1
is not a prerequisites for this
talk.

○ That said -- if you want to get
started with graphics
programming, that may be a good
source of information.

○ I have some skeleton code for
rendering objects with a
framebuffer.

https://www.youtube.com/watch?v=8GV_TuYk3lk&t=11766s
https://www.youtube.com/watch?v=8GV_TuYk3lk&t=11766s

DConf 2024 Online (2/2)

8

● This is a ‘part 2’ talk of my
DConf 2024 Online talk

○ https://www.youtube.com/watch
?v=8GV_TuYk3lk&t=11766s

● Don’t worry though -- part 1
is not a prerequisites for this
talk.

○ That said -- if you want to get
started with graphics
programming, that may be a good
source of information.

○ I have some skeleton code for
rendering objects with a
framebuffer.

My goal today: Is for graphics programmers (or folks
considering getting into graphics) to give Dlang a try!

The D Programming Language I’ve found well suited for
real-time graphics work! (See my previous talks on raytracing in
D for non-real time graphics work)

https://www.youtube.com/watch?v=8GV_TuYk3lk&t=11766s
https://www.youtube.com/watch?v=8GV_TuYk3lk&t=11766s

Quick Demo (1/2)

9

● So here’s a little capture of a
scene I’m working on

○ There's A little bit of lighting, and
a few models loaded, and about
260,000 triangles to draw the
scene.

■ It’s a purposefully
‘unoptimized set of art
assets’ to stress the system

○ This is the classic ‘Sponza’ scene
used in graphics with the classic
‘Stanford Bunny’ usually as
benchmarks

● This was just a small
hackathon in a few days
work!

Quick Demo (2/2)

10

● Let’s dive in just a tiny bit
deeper to see what was
interesting here

○ Next Slide

RenderDoc (a GPU Profiler) (1/2)

11

● For game and graphics
programming, the same GPU
tools (e.g. Renderdoc) have
worked just fine for me in D
as other toolstacks (e.g. C++)

○ These GPU Profilers are very
valuable for capturing a ‘memory
snapshot’ of what’s been
allocated on the GPU

● Other tools like ‘perf’ for CPU
profiling also work well with
D.

○ *I also like reminding folks of the
builtin profiler in D which is
handy.)

https://renderdoc.org/builds

https://renderdoc.org/builds

RenderDoc (a GPU Profiler) (2/2)

12

● Within a tool like
Renderdoc, you can
inspect the geometry just
as you normally would --

○ Again it’s the same OpenGL,
Vulkan, etc. function calls.

○ If you have prior
programming experience in
these APIs, the experience
transfers directly over.

Working with Geometry Challenge

13

● What is perhaps interesting in
this scene is that it may appear
to the user that there are only
‘two’ pieces of geometry.

○ the ‘bunny’ (glowing fun colors)
○ The building -- itself is just one file,

but made up of many ‘chunks’ of
other 3D data

○ next slide to see closer

OBJ File Format [wavefront obj file format]

14

● Same screenshot as
before, just slightly
larger

● Again showing that in
order to sift through
the many ‘chunks’ of
data in one file .obj I
had to parse it and
separate out the data.

https://en.wikipedia.org/wiki/Wavefront_.obj_file

Parsing OBJ Files (1/2)

15

● A .obj (3D Object File Format) file looks
something like on the right

● We have geometry data at the top
● We then have potentially 1 or more

materials and/or objects group on the
bottom

See DConf 2024 Online talk for how short the parsing code can be!

Parsing OBJ Files (2/2)

16

● What’s neat is you can actually
parallelize this process (where it makes
sense on large enough files!)

● So if your artists are throwing lots of
geometry and textures at you, you can
parse the top half first -- then

○ Every time you hit ‘usemtl’ you can kickstart
the process of creating a ‘chunk’ of a 3D object,
or otherwise parsing the material file or loading
the image files

○ It’s become a little bit of a hobby project to see
how fast I can parse these .obj files -- stay
tuned!

■ i.e. Caldera Data Set from Call of Duty will
begin investigation soon.

https://blog.activision.com/content/atvi/activision/atvi-touchui/web/en_gb/blog/activision/2024/activision-releases-call-of-duty-warzone-caldera-data-set

Graphics Engine Design
Working Backwards a Bit

17

Structure of a Game (1/2)

18

● So moving away from the
graphics stuff for a moment,
the infrastructure for these
projects is pretty neat at the
‘core game loop’

○ Basically it’s just an
input/update/render function

○ I like to separate that out to
another function
(AdvanceFrame()) for more
control

Structure of a Game (2/2)

19

● Of course in a
game/graphics application
you may want more power
and make the system more
dynamic

● It becomes relatively easy
to have some ‘interface’
that you can write to

○ This is where ‘callbacks’
come in, and I can hook into
the system to do whatever is
needed.

○ Note: Writing your own
events to some FIFO queue is
another strategy

Runtime Polymorphism without classes

20

● With a little bit of cleverness, I am
doing something for my callback
system similar to the tardy project.

○ (Thanks Atila!)
● Then I can basically use only structs

for everything :)
○ Atila has a nice project here I got some

ideas from!
● My interest is wanting to keep

flexibility of polymorphism, but
within the betterC subset.

○ betterC is a really neat part of the D
ecosystem -- top notch for portability
and/or embedded systems

○ https://dlang.org/spec/betterc.html
○ https://wiki.dlang.org/Generating_WebA

ssembly_with_LDC https://code.dlang.org/packages/tardy

https://dlang.org/spec/betterc.html
https://wiki.dlang.org/Generating_WebAssembly_with_LDC
https://wiki.dlang.org/Generating_WebAssembly_with_LDC
https://code.dlang.org/packages/tardy

Productivity in D for Graphics Programming
Back to graphics

21

Folks here already know (or are learning !)

22

● D is a productive language
● So I have a few small highlights from this project of what I found

useful

Rapid Iteration Time Matters A lot (Blooper Reel)

23

● In graphics you encounter all sorts of strange errors
○ So fast build times matter!

● Compiling and building primarily on DMD
○ LDC2 and GDC also build quite fast!

Hot Reloading Shaders (GPU)

24

● For graphic shaders (separate compiled programs that execute on
the GPU) -- hot reloading is fairly standard to help improve
iteration time

● Hot reload: Ability to recompile a portion of the program while the
program is still running

○ https://antongerdelan.net/opengl/shader_hot_reload.html

https://antongerdelan.net/opengl/shader_hot_reload.html

Hot Reload (CPU Side) (1/2)

25

● What you can do on the GPU, you
can of course do on the CPU

● I prototyped a little system to
recompile and rebuild individual
modules on the fly

○ Effectively allows me to use D as my
scripting language for compiled code
and maximum performance

● In D we have a great option,
because I can recompile very fast
using DMD -- also have the
option to use the GDC or LDC
compilers otherwise to generate
optimized code to reload.

Hot reload with shared libraries
Note: Some care needed if you allocate in shared
libraries (Work in progress to do so safely)

Hot Reload (CPU Side) (2/2)

26

● So where this became handy
was in the little ‘callback’
system I had

○ I could trigger a RebuildAndReload
and add (or remove) callbacks to my
system to change behavior without
having to stop.

○ D’s compile times are more than fast
enough for this small project -- but I
like speed!

● I know there have also been
previous efforts with LDC2 with
@dynamicCompile traits

○ These features are certainly
appreciated, and perhaps worth
taking a further look at.

A Few Other Things Handy Things (1/3)

27

● Post condition and ‘invariant’ have been useful constructs in my
code for early exit

○ e.g.
■ Checking for NaN and ensure we are always in a good state after vector

operations.
■ Anytime I am creating unit Vectors (and I do so frequently) -- it’s good to not

divide by 0!
○ https://dlang.org/spec/contracts.html

https://dlang.org/spec/contracts.html

A Few Other Things Handy Things (2/3)

28

● Easy to template code
○ Able to make function templates to eliminate branches in code (i.e. which shader

type to compile at run-time
■ Instead make a templated function
■ Also can apply a ‘template constraint’ to avoid illegal types from being

created
● Enforced at compile-time, again so you don’t have to pay the cost if you

compile your shaders at run-time.

A Few Other Things Handy Things (3/3)

29

● In many places where I have enums in OpenGL, I can I can template
them away -- often making my codebase more robust.

○ Code can be self-documenting for what ‘enum’ types are legal
○ (i.e. Use a function as a template constraint to check valid enums)

A Few More Pictures and Thoughts Before
We Leave

30

More to explore for me

31

● I did some more experiments and
some porting of some of my C++
code to the right to Dlang

○ (top-right normal mapping)
○ (bunny - diffuse shading)
○ (Particles -- demonstrating instanced

draw calls)
● The other goal here is to just

generate lots of sample code for
other folks to draw from.

○ I’m otherwise implementing a
column-ordered math library and
exploring the vector extensions for
math (and other use cases)

○ See: https://dlang.org/spec/simd.html
○ I’ve been also learning Vulkan and

WebGPU otherwise see the experience
with DLang.

https://dlang.org/spec/simd.html

Toolstack for today’s work

32

● Project uses:
○ bincbc-sdl
○ bindbc-opengl
○ bindbc-loader
○ A combination of my own math library and some portions of inmath/gl3n libraries

Wrap Up and More Resources

33

OpenGL, Vulkan, etc. Bindings

● Many graphics API bindings otherwise exist
○ If you’ve previously worked in these APIs, they will be relatively straightforward

to get back into
○ Folks should consider these libraries

■ Raylib-d, glfw-d, etc. are other excellent libraries for starting to do graphics
work

34

Some High Level Takeaways

● D for real-time graphics work I
have found excellent for
improving my iteration time

○ I get to think more about solving
interesting problems and building
useful systems.

● The toolset is effectively the same
if you’re already familiar with
graphics programming (i.e. C-APIs
like OpenGL, Vulkan, etc.)

● I hope this little talk encourages
other folks to give the D language
a try otherwise for graphics and
game work!

35

YouTube

● I am actively adding
more lessons about
the D programming
language

○ https://www.youtub
e.com/c/MikeShah

● Eventually I will
start adding
graphics to this
playlist (or a new
playlist) on my
channel.

36
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

Further resources and training materials

37

● Tons of talks (Games, graphics, servers, etc.)
○ https://wiki.dlang.org/Videos#Tutorials
○ Talks more recently from Ethan Watson, Manu Evans, Hipreme Engine for folks

who want to see game stuff.
● My ‘Graphics Related’ talks on Ray Tracers

○ DConf '22: Ray Tracing in (Less Than) One Weekend with DLang -- Mike Shah
■ https://www.youtube.com/watch?v=nCIB8df7q2g

○ DConf Online '22 - Engineering a Ray Tracer on the Next Weekend with DLang
■ https://www.youtube.com/watch?v=MFhTRiobWfU

https://wiki.dlang.org/Videos#Tutorials
https://www.youtube.com/watch?v=nCIB8df7q2g
https://www.youtube.com/watch?v=MFhTRiobWfU

The Case for Graphics
-- in DLang: Part 2 - Tech Demo

with Mike Shah

14:30 - 15:00 Fri, Sept 19, 2024

30 minutes | Introductory Audience 38

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Extra

39

