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Overview

▪ Why programming supercomputers is hard

▪ Tasks as the main paradigm

▪ Walking the software stack – from D to C

▪ Intermezzo: our own supercomputer architecture

▪ The joy and pain on using D for HPC
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Is D for High Performance Computing?
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imec is nanotechnology
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▪ Globally, the leading independent
R&D center in nanotechnology since 1984

▪ >5500 international R&D top talents

▪ >€3.5B i v    d i  l  di g-edge semiconductor 
fabs

▪ Health and life sciences, mobility, industry 4.0, 
agrifood, smart cities, sustainable energy, etc.
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We do Hardware-Software Co-design
Better Software on Better Hardware
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Engineering simulations
the backbone of commercial HPC
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HPCG Benchmark runs poorly on top supercomputers
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# Name Peak 

Performance

Cores HPCG performance Actual Usage

1 Frontier
AMD EPYC, 

AMD Instinct

1.7 ExaFlop/s 8,699,904 14.1 PetaFlop/s 0,82%

2 Aurora
Intel Xeon

Intel DPU

2 ExaFlop/s 9,264,128 5,6 PetaFlop/s 0,28%

3 Eagle
Intel Xeon

Nvidia H100

857 PetaFlop/s 2,073,600 (not measured)

4 Fugaku
Fujitsu A64FX

537 PetaFlop/s 7,630,848 16 PetaFlop/s 2,98%

5 LUMI
AMD EPYC, 

AMD Instinct

429 PetaFlop/s 2,220,288 3.4 PetaFlop/s 0,86%

Source: TOP500 List June 2024, Rmax/Rpeak, HPCG/Rpeak
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High performance computing
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We get the most out of available hardware, in the large or the small

Fast Network Interconnect, e.g. Infiniband

Shared Memory System Shared Memory System

Threads

OpenMP

Fork/Join

…

MPI

…

Vectorization

   g  ’ 

SIMD intrinsics

…
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Why create a new programming model ?
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Existing approaches require considering other parallel entities

Change program 

Change data distribution

Change program 

Change data distribution
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Separation of Responsibility
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Dev
Functionality

Parallelism

Runtime
Scheduling

Distributed Data storage

Load balancing



public

Task is the main building block

▪ Smallest Unit of Compute

▪ Is executable

▪ May run in parallel

▪ May spawn new tasks

▪ Has dependencies on other tasks

▪ Input is read-only

▪ Output is write-only
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Tasks and dependencies
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Tasks have dependencies on when they can start

int fib(n) {
 if( n < 2) return 1;
 return fib(n-1) + fib(n-2);
}

fib(3)

fib(2) fib(1) ...+...

fib(1) fib(0) ...+...

fib_2 = newTask("FIB_2", &fib_tsk,
[fib2, 2], []);

fib_1 = newTask("FIB_1", &fib_tsk,
[fib1, 1], []);

fib_add = newTask(”F_ADD", &fib_add,
[fib3,fib1,fib2],
[fib_1, fib_2]);

Start-Dependencies
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The Software Stack

D

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

C

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

HW Management Processor Your Laptop / Your Supercomputer

12

L  ’  w lk d w   h  S   k



public

Fundamental Pattern
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Task Splitting and Kernels

void sum(
 Vector!float C,
 in Vector!float A,
 in Vector!float B) 
{
 if (length <= cutOff) 
  xo!sumKernel(C, A, B); 

 else // if (length > cutOff) 
  xo!sum(C1, A[0..n/2], B[0..n/2])
  .and(xo!sum(C2, A[n/2..n], B[n/2..n]))
  .then!appendRows(C, C1, C2); 
}
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@bariKernel
void sumKernel(Matrix!float C, in Matrix!float A, in Matrix!float B)
{
    foreach(rix; 0..n)
        foreach(cix; 0..m)
            C[rix, cix] = A[rix, cix] + B[rix, cix];
}

sum

sum sum append

kernel kernel append
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Map-Reduce
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As in std.parallelism Taskpool.map / reduce

auto N = 16 * 1024 * 1024;
auto vector = Vector!float(N);
auto result = Vector!float(1);

auto initTask = map!(init)(vector, N);

auto sumTask = reduce!(sum)(
 result, [vector], N, [initTask]
);

newTask!printVec(result, N, [sumTask]);
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Composing task into libraries and applications

▪ Similar abstraction level as using PyTorch

▪ 3 layers, 1.34M parameters

//ATTENTION LAYER
auto tsk = xo!dotProduct(K, X, Wk)

       .and(xo!dotProduct(Q, X, Wq))

       .then!dotProductTranspose(QKt, Q, K)
       .then!softmax(A, QKt);

xo!dotProduct(V, X, Wv)
  .and(tsk)
  .then!dotProduct(Out, A, V)
  .then!printMatrix("Att", Out); tensor

library

GPT Application
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The Software Stack

D

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

C

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

HW Management Processor Your Laptop / Your Supercomputer
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Hardware-Software System Co-design

▪ Co-design of system software and hardware 

▪ Focus on solving data movement bottlenecks

▪ Match application performance and cost sweet-spot

▪ A novel hardware/software system 

providing implicit application scalability

▪ RISC-V based compute core optimized for HPC and AI

▪ Hardware accelerators for task and data management 

for HPC and AI applications

C
o

st

Performance
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Resulting in this System Board

▪ Compute Array

▪ Management Processor

▪ Many components dedicated to moving data
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The Software Stack

D

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

C

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

HW Management Processor Your Laptop / Your Supercomputer
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Bridge D to C using templates and mixins
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D → C: newTask

Runtime (D)

Runtime (C)

newTask wrap

template
TaskId newTask(alias fun, ArgsGiven...)(auto ref ArgsGiven argv)
{
  // create an "extern (C)" equivalent with argc, argv[]
  DvmTaskFunc funptr = &(wrap!fun);
  ulong[] args = new ulong[Args.length];

  // verify + convert arguments
  static foreach (int i, ArgT; Args)
    static if (hasUDA!(ArgT, DistributedDatastructure))

      args[i] = argv[i].oid;
    else
           args[i] = argv[i].asULong;

  return newTask(funptr, args);
}



public

Bridge D to C using templates and mixins
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C → D: wrap

Runtime (D)

Runtime (C)

newTask wrap

template wrap(alias fun)
{
  import std.traits;

  alias Args = Parameters!fun;
  enum ArgsCnt = Args.length;
  extern (C) void wrap(ulong* argv, ulong argc)
  {
    static foreach (int i, arg; Args)
    {

      mixin(ParamsHelper!(i, arg, "funArg" ~ i.stringof));
    }
    mixin("fun(" ~ InjectParams!ArgsCnt ~ ");");
  }
}

ParamsHelper!(1, double, ”c”) double c=argv[1].fromULong!(double);

ParamsHelper!(2, Vector!ulong, ”b”) Vector!ulong b=Vector!ulong.fromOID(argv[2]);
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The joy and pain of betterC

▪   We take happily with us in betterC land

▪ Mixins, Templates

▪ Unit Tests

▪ Imports

▪ Array Slicing

▪ S        h      d  d lib   y (   i g, …) 

▪   We have to leave some things behind

▪ Most of the standard library (arrays,  stdio)

▪ Classes  (only struct)

▪ Type Info (fullyQualifiedName)

▪ Threading and synchronizations
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Small and efficient code on a small RISC-V processor

DVM Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS 

RISC-V

FreeRTOS 

POSIX

Standard Linux

Management 

Processor

Your Laptop / Your 

Supercomputer
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The joy and pain of betterC

▪ FreeRTOS has

▪ semaphores

▪ threads

▪ malloc

▪ console logging

▪ We implemented an new DVec
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Use FreeRTOS  to overcome the limitations

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS 

RISC-V

FreeRTOS 

POSIX

Standard Linux

Management 

Processor

Your Laptop / Your 

Supercomputer

version (D_BetterC)
{
 extern (C) void console_log(ulong level, const char* fmt, ...);
 void log(Args...)(LogLevel level, const(char*) format, Args args)

 {
  console_log(level, format, args);
 }
}
else

{
 void log(Args...)(LogLevel level, const(char*) format, Args args)
 {
  import core.stdc.stdio;
  if (level < LogLevel.DEBUG)

    printf(format, args);
  }
}
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The joy and pain of betterC
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The result: small code 

35 KiB 50 KiB 800 KiB

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

static stripped binary

all inclusive
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The Good, The Bad And The Ugly 

▪ D is a very powerfull l  gu g , i  y u k  w wh   y u’   d i g

▪ D is not easy to learn and has some quirks

▪ Sometimes you need to write ugly code

25
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The Good

▪ Small code footprint with betterC

▪ LDC for RISC-V was a breeze 

▪ Powerful language

▪ Single codebase with version and static if/for

▪ Templates, mixins, reflection

▪ Some cool features (gems)

▪ Uniform Function Call Syntax (UFCS)

▪ Scope guards

▪ And many more
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D is a very powerful language, if you know what you are doing
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The Bad

▪ Not an easy language to learn

▪ Small user base

▪ Integration with C

▪ Should I use ImportC, dpp, dtep, ctod or htod???

▪ Not clear what is in betterC

▪ Thread local is the default

▪ shared ripples through

▪ __gshared → y u’      y u   w 
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D is not easy to learn and has some quirks
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The Ugly

▪ Proprietary dub build system

▪ CMake hack to integrate dub

▪ Generated dub.json (366 lines of dub)

▪ Integration with existing libraries is cumbersome

▪ MPI, HDF5
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Sometimes you need to write ugly code

add_custom_command(
 OUTPUT lib_rtm_d.a
 COMMAND export DPATH=${CMAKE_CURRENT_BINARY_DIR} &&
 rm -f ${CMAKE_CURRENT_BINARY_DIR}/lib_rtm_d.a &&
 dub bu ild --config=rtmlib --build=${DUB_TARGET} ${DUB_DEBUG} &&
 mv bin/lib_rtm_d.a ${CMAKE_CURRENT_BINARY_DIR}
 BYPRODUCTS ${CMAKE_SOURCE_DIR}/d_apps/bin
 WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}/d_apps
 DEPENDS ${SST_RTM_D_SOURCES} stats
)
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Hacking support for MPI and HDF5

▪ MPI

▪ Found at least 3 repos on GitHub

▪ Each using own mpi.d

▪ Each with different functions supported

▪ HDF5

▪ We could not get it to work

▪ Using h5dump + pipes 
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The Ugly

/**

   mpi.d: MPI wrapper, it is a partial  

          conversion of mpi.h.

*/

// only 50 MPI functions supported

auto args = [

  "h5dump",

  /* raw data */ "-y",

  "-d", dataset,

  /* Litle Endian*/ "-b", "LE",

  /*Output raw to stderr */ "-o", "/dev/stderr",

  /*Inputfile: */ filename

];

auto pipes = pipeProcess(args, stdout | stderr);

while (true)

{

  T[] buf = pipes.stderr.rawRead(buffer);

  result ~= buf;

  if (buf.length < bufferLen)

    break;

}
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Conclusion

Benefits of D for HPC

▪ Powerful, Fast, Compact, Efficient

▪ We keep on using D 

Roadblocks for acceptance in HPC  

▪ Not enough users in HPC 

▪ Bootstrapping problem

▪ Bindings for the fundamental libraries

▪ M I, BLAS, HDF5, …

▪ Profiling and debugging

▪ Distributed profiling and debugging
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Is there a Future for D in HPC?

My goal for this DConf
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