
The Joy and Pain of using D for HPC

Is D ready for Supercomputers?

Tom Vander Aa

HPC LAB

public

Overview

▪ Why programming supercomputers is hard

▪ Tasks as the main paradigm

▪ Walking the software stack – from D to C

▪ Intermezzo: our own supercomputer architecture

▪ The joy and pain on using D for HPC

2

Is D for High Performance Computing?

Parent

Child
Child

Dependency

public

imec is nanotechnology

3

▪ Globally, the leading independent
R&D center in nanotechnology since 1984

▪ >5500 international R&D top talents

▪ >€3.5B i v d i l di g-edge semiconductor
fabs

▪ Health and life sciences, mobility, industry 4.0,
agrifood, smart cities, sustainable energy, etc.

public

We do Hardware-Software Co-design
Better Software on Better Hardware

public

Engineering simulations
the backbone of commercial HPC

public

HPCG Benchmark runs poorly on top supercomputers

6

Name Peak

Performance

Cores HPCG performance Actual Usage

1 Frontier
AMD EPYC,

AMD Instinct

1.7 ExaFlop/s 8,699,904 14.1 PetaFlop/s 0,82%

2 Aurora
Intel Xeon

Intel DPU

2 ExaFlop/s 9,264,128 5,6 PetaFlop/s 0,28%

3 Eagle
Intel Xeon

Nvidia H100

857 PetaFlop/s 2,073,600 (not measured)

4 Fugaku
Fujitsu A64FX

537 PetaFlop/s 7,630,848 16 PetaFlop/s 2,98%

5 LUMI
AMD EPYC,

AMD Instinct

429 PetaFlop/s 2,220,288 3.4 PetaFlop/s 0,86%

Source: TOP500 List June 2024, Rmax/Rpeak, HPCG/Rpeak

public

High performance computing

7

We get the most out of available hardware, in the large or the small

Fast Network Interconnect, e.g. Infiniband

Shared Memory System Shared Memory System

Threads

OpenMP

Fork/Join

…

MPI

…

Vectorization

 g ’

SIMD intrinsics

…

public

Why create a new programming model ?

8

Existing approaches require considering other parallel entities

Change program

Change data distribution

Change program

Change data distribution

public

Separation of Responsibility

9

Dev
Functionality

Parallelism

Runtime
Scheduling

Distributed Data storage

Load balancing

public

Task is the main building block

▪ Smallest Unit of Compute

▪ Is executable

▪ May run in parallel

▪ May spawn new tasks

▪ Has dependencies on other tasks

▪ Input is read-only

▪ Output is write-only

10

A k …

Parent

Child
Child

Dependency
Key to good performance

public

Tasks and dependencies

11

Tasks have dependencies on when they can start

int fib(n) {
 if(n < 2) return 1;
 return fib(n-1) + fib(n-2);
}

fib(3)

fib(2) fib(1) ...+...

fib(1) fib(0) ...+...

fib_2 = newTask("FIB_2", &fib_tsk,
[fib2, 2], []);

fib_1 = newTask("FIB_1", &fib_tsk,
[fib1, 1], []);

fib_add = newTask(”F_ADD", &fib_add,
[fib3,fib1,fib2],
[fib_1, fib_2]);

Start-Dependencies

public

The Software Stack

D

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

C

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

HW Management Processor Your Laptop / Your Supercomputer

12

L ’ w lk d w h S k

public

Fundamental Pattern

13

Task Splitting and Kernels

void sum(
 Vector!float C,
 in Vector!float A,
 in Vector!float B)
{
 if (length <= cutOff)
 xo!sumKernel(C, A, B);

 else // if (length > cutOff)
 xo!sum(C1, A[0..n/2], B[0..n/2])
 .and(xo!sum(C2, A[n/2..n], B[n/2..n]))
 .then!appendRows(C, C1, C2);
}

13

@bariKernel
void sumKernel(Matrix!float C, in Matrix!float A, in Matrix!float B)
{
 foreach(rix; 0..n)
 foreach(cix; 0..m)
 C[rix, cix] = A[rix, cix] + B[rix, cix];
}

sum

sum sum append

kernel kernel append

public

Map-Reduce

14

As in std.parallelism Taskpool.map / reduce

auto N = 16 * 1024 * 1024;
auto vector = Vector!float(N);
auto result = Vector!float(1);

auto initTask = map!(init)(vector, N);

auto sumTask = reduce!(sum)(
 result, [vector], N, [initTask]
);

newTask!printVec(result, N, [sumTask]);

public

Composing task into libraries and applications

▪ Similar abstraction level as using PyTorch

▪ 3 layers, 1.34M parameters

//ATTENTION LAYER
auto tsk = xo!dotProduct(K, X, Wk)

 .and(xo!dotProduct(Q, X, Wq))

 .then!dotProductTranspose(QKt, Q, K)
 .then!softmax(A, QKt);

xo!dotProduct(V, X, Wv)
 .and(tsk)
 .then!dotProduct(Out, A, V)
 .then!printMatrix("Att", Out); tensor

library

GPT Application

public

The Software Stack

D

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

C

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

HW Management Processor Your Laptop / Your Supercomputer

16

L ’ w lk d w h S k

public

Hardware-Software System Co-design

▪ Co-design of system software and hardware

▪ Focus on solving data movement bottlenecks

▪ Match application performance and cost sweet-spot

▪ A novel hardware/software system

providing implicit application scalability

▪ RISC-V based compute core optimized for HPC and AI

▪ Hardware accelerators for task and data management

for HPC and AI applications

C
o

st

Performance

public

Resulting in this System Board

▪ Compute Array

▪ Management Processor

▪ Many components dedicated to moving data

18

public

The Software Stack

D

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

C

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

HW Management Processor Your Laptop / Your Supercomputer

19

L ’ w lk d w h S k

public

Bridge D to C using templates and mixins

20

D → C: newTask

Runtime (D)

Runtime (C)

newTask wrap

template
TaskId newTask(alias fun, ArgsGiven...)(auto ref ArgsGiven argv)
{
 // create an "extern (C)" equivalent with argc, argv[]
 DvmTaskFunc funptr = &(wrap!fun);
 ulong[] args = new ulong[Args.length];

 // verify + convert arguments
 static foreach (int i, ArgT; Args)
 static if (hasUDA!(ArgT, DistributedDatastructure))

 args[i] = argv[i].oid;
 else
 args[i] = argv[i].asULong;

 return newTask(funptr, args);
}

public

Bridge D to C using templates and mixins

21

C → D: wrap

Runtime (D)

Runtime (C)

newTask wrap

template wrap(alias fun)
{
 import std.traits;

 alias Args = Parameters!fun;
 enum ArgsCnt = Args.length;
 extern (C) void wrap(ulong* argv, ulong argc)
 {
 static foreach (int i, arg; Args)
 {

 mixin(ParamsHelper!(i, arg, "funArg" ~ i.stringof));
 }
 mixin("fun(" ~ InjectParams!ArgsCnt ~ ");");
 }
}

ParamsHelper!(1, double, ”c”) double c=argv[1].fromULong!(double);

ParamsHelper!(2, Vector!ulong, ”b”) Vector!ulong b=Vector!ulong.fromOID(argv[2]);

public

The joy and pain of betterC

▪ We take happily with us in betterC land

▪ Mixins, Templates

▪ Unit Tests

▪ Imports

▪ Array Slicing

▪ S h d d lib y (i g, …)

▪ We have to leave some things behind

▪ Most of the standard library (arrays, stdio)

▪ Classes (only struct)

▪ Type Info (fullyQualifiedName)

▪ Threading and synchronizations

22

Small and efficient code on a small RISC-V processor

DVM Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS

RISC-V

FreeRTOS

POSIX

Standard Linux

Management

Processor

Your Laptop / Your

Supercomputer

public

The joy and pain of betterC

▪ FreeRTOS has

▪ semaphores

▪ threads

▪ malloc

▪ console logging

▪ We implemented an new DVec

23

Use FreeRTOS to overcome the limitations

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS

RISC-V

FreeRTOS

POSIX

Standard Linux

Management

Processor

Your Laptop / Your

Supercomputer

version (D_BetterC)
{
 extern (C) void console_log(ulong level, const char* fmt, ...);
 void log(Args...)(LogLevel level, const(char*) format, Args args)

 {
 console_log(level, format, args);
 }
}
else

{
 void log(Args...)(LogLevel level, const(char*) format, Args args)
 {
 import core.stdc.stdio;
 if (level < LogLevel.DEBUG)

 printf(format, args);
 }
}

public

The joy and pain of betterC

24

The result: small code

35 KiB 50 KiB 800 KiB

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library: Task, Map, Reduce

Runtime (D)

Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS RISC-V FreeRTOS POSIX Standard Linux

static stripped binary

all inclusive

public

The Good, The Bad And The Ugly

▪ D is a very powerfull l gu g , i y u k w wh y u’ d i g

▪ D is not easy to learn and has some quirks

▪ Sometimes you need to write ugly code

25

public

The Good

▪ Small code footprint with betterC

▪ LDC for RISC-V was a breeze

▪ Powerful language

▪ Single codebase with version and static if/for

▪ Templates, mixins, reflection

▪ Some cool features (gems)

▪ Uniform Function Call Syntax (UFCS)

▪ Scope guards

▪ And many more

26

D is a very powerful language, if you know what you are doing

public

The Bad

▪ Not an easy language to learn

▪ Small user base

▪ Integration with C

▪ Should I use ImportC, dpp, dtep, ctod or htod???

▪ Not clear what is in betterC

▪ Thread local is the default

▪ shared ripples through

▪ __gshared → y u’ y u w

27

D is not easy to learn and has some quirks

public

The Ugly

▪ Proprietary dub build system

▪ CMake hack to integrate dub

▪ Generated dub.json (366 lines of dub)

▪ Integration with existing libraries is cumbersome

▪ MPI, HDF5

28

Sometimes you need to write ugly code

add_custom_command(
 OUTPUT lib_rtm_d.a
 COMMAND export DPATH=${CMAKE_CURRENT_BINARY_DIR} &&
 rm -f ${CMAKE_CURRENT_BINARY_DIR}/lib_rtm_d.a &&
 dub bu ild --config=rtmlib --build=${DUB_TARGET} ${DUB_DEBUG} &&
 mv bin/lib_rtm_d.a ${CMAKE_CURRENT_BINARY_DIR}
 BYPRODUCTS ${CMAKE_SOURCE_DIR}/d_apps/bin
 WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}/d_apps
 DEPENDS ${SST_RTM_D_SOURCES} stats
)

public

Hacking support for MPI and HDF5

▪ MPI

▪ Found at least 3 repos on GitHub

▪ Each using own mpi.d

▪ Each with different functions supported

▪ HDF5

▪ We could not get it to work

▪ Using h5dump + pipes

29

The Ugly

/**

 mpi.d: MPI wrapper, it is a partial

 conversion of mpi.h.

*/

// only 50 MPI functions supported

auto args = [

 "h5dump",

 /* raw data */ "-y",

 "-d", dataset,

 /* Litle Endian*/ "-b", "LE",

 /*Output raw to stderr */ "-o", "/dev/stderr",

 /*Inputfile: */ filename

];

auto pipes = pipeProcess(args, stdout | stderr);

while (true)

{

 T[] buf = pipes.stderr.rawRead(buffer);

 result ~= buf;

 if (buf.length < bufferLen)

 break;

}

public

Conclusion

Benefits of D for HPC

▪ Powerful, Fast, Compact, Efficient

▪ We keep on using D

Roadblocks for acceptance in HPC

▪ Not enough users in HPC

▪ Bootstrapping problem

▪ Bindings for the fundamental libraries

▪ M I, BLAS, HDF5, …

▪ Profiling and debugging

▪ Distributed profiling and debugging

30

Is there a Future for D in HPC?

My goal for this DConf

CONFIDENTIAL – INTERNAL USE31

	Overview
	Slide 1: The Joy and Pain of using D for HPC
	Slide 2: Overview

	imec and CSA
	Slide 3: imec is nanotechnology
	Slide 4: We do Hardware-Software Co-design

	HPC Performance
	Slide 5: Engineering simulations
	Slide 6: HPCG Benchmark runs poorly on top supercomputers
	Slide 7: High performance computing
	Slide 8: Why create a new programming model ?

	Tasks and Objects
	Slide 9: Separation of Responsibility
	Slide 10: Task is the main building block
	Slide 11: Tasks and dependencies

	dlang examples
	Slide 12: The Software Stack
	Slide 13: Fundamental Pattern
	Slide 14: Map-Reduce
	Slide 15: Composing task into libraries and applications
	Slide 16: The Software Stack

	Hardware Design
	Slide 17: Hardware-Software System Co-design
	Slide 18: Resulting in this System Board
	Slide 19: The Software Stack
	Slide 20: Bridge D to C using templates and mixins
	Slide 21: Bridge D to C using templates and mixins
	Slide 22: The joy and pain of betterC
	Slide 23: The joy and pain of betterC
	Slide 24: The joy and pain of betterC

	Evaluation of using D
	Slide 25: The Good, The Bad And The Ugly
	Slide 26: The Good
	Slide 27: The Bad
	Slide 28: The Ugly
	Slide 29: Hacking support for MPI and HDF5
	Slide 30: Conclusion
	Slide 31

