LecC

The Joy and Pain of using D for HPC

Is D ready for Supercomputers?

Tom Vander Aa
HPC LAB

Overview
Is D for High Performance Computing?

= Why programming supercomputers is hard

= Tasks as the main paradigm

= Walking the software stack — from D to C

" Intermezzo: our own supercomputer architecture
= The joy and pain on using D for HPC

Cost

Performance

“unec 2

Dependency

public

imec is nanotechnology

“unec

Globally, the leading independent
R&D center in nanotechnology since 1984

>5500 international R&D top talents

>€3.5B invested in leading-edge semiconductor
fabs

Health and life sciences, mobility, industry 4.0,
agrifood, smart cities, sustainable energy, etc.

public

c
.20
(7]
0]

o

Software Co-

Better Software on Better Hardware

Hardware

We do

Engineering simulations
the backbone of commercial HPC

“unec oublic

HPCG Benchmark runs poorly on top supercomputers

Peak Cores HPCG performance | Actual Usage
Performance

Frontier |.7 ExaFlop/s 8,699,904 14.1 PetaFlop/s 0,82%
AMD EPYC,
AMD Instinct

2 Aurora 2 ExaFlop/s 9,264,128 5,6 PetaFlop/s 0,28%

Intel Xeon
Intel DPU

3 Eagle 857 PetaFlop/s 2,073,600 (not measured)

Intel Xeon
Nvidia HI100

4 Fugaku 537 PetaFlop/s 7,630,848 |6 PetaFlop/s 2,98%
Fujitsu A64FX

5 LUMI 429 PetaFlop/s 2,220,288 3.4 PetaFlop/s 0,86%
AMD EPYC,
AMD Instinct

’ mumec Source:TOP500 List Jume 2024, Rmax/Rpeak, HPCG/Rpeak public

High performance computing
We get the most out of available hardware, in the large or the small

Fast Network Interconnect, e.g. Infiniband

MPI

Memory

1tel® Scalable
lemory Buffer

Memory

Intel® 7500 Intel® Scalable
Chipset d Memory Buffer

Xeon 7500

Vectorization
Pragma’s
S I M D i ntri n Sics PCI Express* 2.0

Intel® 82599

W\ ‘\" 3
\ :
-
'\ A \ \
\
. |nte|
> Xeon 7500
\ N A
\\
i

Intel® Intelligent Power
Node Manager PCI Express* 2.0
Technology

inted) 2
3 .~ Intel® Data Center % ‘

- M
A0S Intel® 82599

Controller

ICH 10/10R ICH 10/10R

Controller

Shared ' Memory System Shared Memory System

Why create a new programming model !
Existing approaches require considering other parallel entities

i
il
il

\

il

Change program Change program
Change data distribution Change data distribution
Q = =1+ O
O + = O

©

“unec

public

Separation of Responsibility

Dev Runtime

Functionality Scheduling
Parallelism Distributed Data storage

Load balancing

“unec) oublic

Task is the main building block
A task ...

= Smallest Unit of Compute
= |s executable
= May run in parallel

= May spawn new tasks

= Has dependencies on other tasks

Dependency

* Input is read-only

) ,]‘ Key to good performance
= Qutput is write-only

“unec o

public

Tasks and dependencies
Tasks have dependencies on when they can start

fib_2 =newTask("FIB_2", &fib_tsk,
[fib2, 2], []);

fib_1=newTask("FIB_1", &fib_tsk,
[fib1, 1], [1);

fib_add = newTask(”F_ADD", &fib_add,
[fib3,fibl,fib2],
¥ [fib_1, fib_2]);

ot

int fib(n) {
if(n<2)return 1;
return fib(n-1) + fib(n-2);
}

“unec I oublic

The Software Stack
Let’s walk down the Stack

HW

“unec

User Application
Application Libraries: Neural Nets, Linear Algebra

Standard Library:Task, Map, Reduce

Runtime (D)
Runtime (C)
FreeRTOS common runtime in C POSIX Threads
FreeRTOS RISC-V FreeRTOS POSIX Standard Linux
Management Processor Your Laptop /Your Supercomputer

public

Fundamental Pattern
Task Splitting and Kernels

void sum(
Vector!float C,
in Vector!float A,
in Vector!float B)

if (length <= cutOff)
xo!sumKernel(C, A, B);

else // if (length > cutOff)
xo!sum(C1, A[0..n/2], B[0..n/2])
.and(xo!sum(C2, A[n/2..n], B[n/2..n]))
.then!appendRows(C, C1, C2);

“unec

@bariKernel
void sumKernel(Matrix!float C, in Matrix!float A, in Matrix!float B)

{

foreach(rix; 0..n)
foreach(cix; 0..m)
Clrix, cix] = Alrix, cix] + B[rix, cix];

public

Map-Reduce

As in std.parallelism Taskpool.map / reduce

auto N =16 * 1024 * 1024,
auto vector = Vectorl!float(N);
auto result = Vector!float(1);

auto initTask = map!(init)(vector, N);

auto sumTask = reduce!(sum)(1
result, [vector], N, [initTask]

);

Vol

newTask!printVec(result, N, [sumTask]);

“unec u oublic

Multi-head attention

Composing task into libraries and applications
GPT Application

= Similar abstraction level as using PyTorch

= 3 layers, |1.34M parameters ==)
//ATTENTION LAYER R e

auto tsk = xo!dotProduct(K, X, Wk)
.and(xo!dotProduct(Q, X, Wq))
.then!dotProductTranspose(QKt, Q, K)
.then!softmax(A, QKt); ‘

xo!dotProduct(V, X, Wv)
.and(tsk)
.then!dotProduct(Out, A, V)
.then!printMatrix("Att", Out);

tensor

library

“unec

public

The Software Stack
Let’s walk down the Stack

HW

“unec

User Application
Application Libraries: Neural Nets, Linear Algebra

Standard Library:Task, Map, Reduce

Runtime (D)
Runtime (C)
FreeRTOS common runtime in C POSIX Threads
FreeRTOS RISC-V FreeRTOS POSIX Standard Linux
Management Processor Your Laptop /Your Supercomputer

public

Hardware-Software System Co-design , ;
for HPC and Al applications

Cost

= Co-design of system software and hardware R .

= Focus on solving data movement bottlenecks

= Match application performance and cost sweet-spot Performance

= A novel hardware/software system
providing implicit application scalability
= RISC-V based compute core optimized for HPC and Al
= Hardware accelerators for task and data management

“unec oublic

Resulting in this System Board

= Compute Array
= Management Processor
= Many components dedicated to moving data

“unec o oublic

The Software Stack
Let’s walk down the Stack

HW

“unec

User Application
Application Libraries: Neural Nets, Linear Algebra

Standard Library:Task, Map, Reduce

Runtime (D)
Runtime (C)
FreeRTOS common runtime in C POSIX Threads
FreeRTOS RISC-V FreeRTOS POSIX Standard Linux
Management Processor Your Laptop /Your Supercomputer

public

Bridge D to C using templates and mixins
D = C:newTask

template
Taskld newTask(alias fun, ArgsGiven...)(auto ref ArgsGiven argv)

{ Runtime (D)
// create an "extern (C)" equivalent with argc, argv[]
DvmTaskFunc funptr = &(wrap !fun);
ulong[] args = new ulong[Args.length];

// verify + convert arguments
static foreach (int i, ArgT; Args)
static if (hasUDA!(ArgT, DistributedDatastructure))
argsli] = argv[il.oid;
else
args[i] = argv[i].asULong;

Runtime (C)

return newTask(funptr, args);

“unec »

public

Bridge D to C using templates and mixins
C - D:wrap

template wrap(alias fun)

{
import std.traits; RU ntime (D)

alias Args = Parameters!fun;
enum ArgsCnt = Args.length;
extern (C) void wrap(ulong* argv, ulong argc)
{
static foreach (int i, arg; Args)
{
mixin(ParamsHelper!(i, arg, "funArg" ~ i.stringof));

}

mixin("fun(" ~ InjectParams!ArgsCnt ~ ");");

) Runtime (C)

}

ParamsHelper!(1, double, ”c”) double c=argv[1].fromULong!(double);

ParamsHelper!(2, Vector!ulong, "b”) Vector!ulong b=Vector!ulong.fromOID(argv[2]);

“unec d oublic

The joy and pain of betterC

Small and efficient code on a small RISC-V processor

= 3¢ We take happily with us in betterC land

Mixins, Templates

Unit Tests

Imports

Array Slicing

Some of the standard library (string, ...)

= @ We have to leave some things behind

“unec

Most of the standard library (arrays, stdio)

Classes (only struct)
Type Info (fullyQualifiedName)
Threading and synchronizations

A

* 5 kK

BETTER C¢
1.000mg

r

DVM Runtime (C)

FreeRTOS common runtime in C POSIX Threads

FreeRTOS
RISC-V

Management
Processor

FreeRTOS Standard Linux
POSIX

Your Laptop / Your
Supercomputer

public

The joy and pain of betterC

Use FreeRTOS to overcome the limitations

free

= FreeRTOS has

= semaphores
= threads
= malloc

= console logging

* We implemented an new DVec

“unec

Runtime (C)

FreeRTOS common runtime in C

POSIX Threads

FreeRTOS FreeRTOS Standard Linux
RISC-V POSIX
Management Your Laptop / Your
Processor Supercomputer

version (D_BetterC)
{
extern (C) void console_log(ulong level, const char* fmt, ...);
void log(Args...)(LogLevel level, const(char*) format, Args args)
{
console_log(level, format, args);
}
}
else
{
void log(Args...)(LogLevel level, const(char*) format, Args args)
{
import core.stdc.stdio;
if (level < LoglLevel. DEBUG)
printf(format, args);
}
}

23

public

The joy and pain of betterC

The result: small code

User Application

Application Libraries: Neural Nets, Linear Algebra

Standard Library:Task, Map, Reduce

Runtime (D)
Runtime (C)
FreeRTOS common runtime in C
FreeRTOS RISC-V FreeRTOS POSIX
35 KiB 50 KiB

“unec g

POSIX Threads

Standard Linux

) 4

800 KiB

static stripped binary
> U
all inclusive

public

The Good, The Bad And The Ugly

= D is avery powerfull language, if you know what you’re doing
= D is not easy to learn and has some quirks

= Sometimes you need to write ugly code

“unec s

public

The Good

D is a very powerful language, if you know what you are doing

= Small code footprint with betterC
= LDC for RISC-V was a breeze

= Powerful language

= Single codebase with version and static if/for
= Templates, mixins, reflection

= Some cool features (gems)

= Uniform Function Call Syntax (UFCYS)
= Scope guards
= And many more

“unec z

public

The Bad

D is not easy to learn and has some quirks

= Not an easy language to learn

= Small user base

* Integration with C

= Should | use ImportC, dpp, dtep, ctod or htod???
= Not clear what is in betterC

* Thread local is the default

= shared ripples through

= gshared = you're on your own

“unec 7

public

The Ugly

Sometimes you need to write ugly code

* Proprietary dub build system
= CMake hack to integrate dub
= Generated dub.json (366 lines of dub)

add_custom_command(
OUTPUT lib_rtm_d.a
COMMAND export DPATH=${CMAKE_CURRENT_BINARY_DIR} &&
rm -f ${CMAKE_CURRENT_BINARY_DIR}/lib_rtm_d.a &&
dub bu ild --config=rtmlib --build=${DUB_TARGET} ${DUB_DEBUG} &&
mv bin/lib_rtm_d.a ${CMAKE_CURRENT_BINARY_DIR}
BYPRODUCTS ${CMAKE_SOURCE_DIR}/d_apps/bin
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}/d_apps
DEPENDS ${SST_RTM_D_SOURCES} stats
)

= Integration with existing libraries is cumbersome
= MPI, HDF5

“unec »

public

/**

Hacking support for MPlI and HDF5 mpi.d: NPT wrapper, it is a partial
conversion of mpi.h.
The Ugly «/

// only 50 MPI functions supported

= MPI

auto args = |

= Found at least 3 repos on GitHub et
* raw data */ "-y",
= Each using own mpid R S

/*Output raw to stderr */ "-o", "/dev/stderr",

= Each with different functions supported e e e

1

auto pipes = pipeProcess(args, stdout | stderr);

= HDF5
while (true)
" We could not get it to work {
T[] buf = pipes.stderr.rawRead (buffer);
= Using h5dump + pipes) result ~= bufy

if (buf.length < bufferLen)

break;
: ¥ =

“unec » oublic

COHC'USiOﬂ Advanced Hotspots Hatspors = INTEL VTUNE PROFILER

Analysis Configuration Collection Log Summary Gottomup CaleriCallee Top-down Tree Platform
Grouping | Function / Call Stack ESIE |

Is there a Future for D in HPC? e

Function / Call Stack Effective Time by Utilization . Overhead 8
Sidie BPcor BOK Bidel BOwe | 5P 7™ | “Timg | WakTima | inactive Time | Prasmption
upoateBusinessAccount 7.9155 I L] 0s 0s 0s 0.055s 934

mainSompSparaliel_for@260 7.915s [] 0s 0s 0s 0.055s 934
7915~ — ol os ool am
19

updateBusinessAccount 0s 0s 0s 0s 0.013s

.

updateCustomerAccount 7.766s | os os 0s 0.052s 111
Beneflts Of D for H PC __kmpc_atomic_fixedB_add 2772 N Os Os

__kmpe_critical 0s 2021s 0s 0s 0.014s 262w
= P ful, Fast, C Effici = :

owertul, Fast, Compact, icient P = wl & & [Tvead]
B OMP Worker Thiead #2 (T = Running
F Cantex
[CPreemption

* We keep on using D & [asttinn

Roadblocks for acceptance in HPC (& T e e e
* Not enough users in HPC

= Bootstrapping problem __
= Bindings for the fundamental libraries

= MPI,BLAS,HDFS,
= Profiling and debugging My goal for this DConf

= Distributed profiling and debugging

* public

“unec

Lihnec

embracing a better life

unec

	Overview
	Slide 1: The Joy and Pain of using D for HPC
	Slide 2: Overview

	imec and CSA
	Slide 3: imec is nanotechnology
	Slide 4: We do Hardware-Software Co-design

	HPC Performance
	Slide 5: Engineering simulations
	Slide 6: HPCG Benchmark runs poorly on top supercomputers
	Slide 7: High performance computing
	Slide 8: Why create a new programming model ?

	Tasks and Objects
	Slide 9: Separation of Responsibility
	Slide 10: Task is the main building block
	Slide 11: Tasks and dependencies

	dlang examples
	Slide 12: The Software Stack
	Slide 13: Fundamental Pattern
	Slide 14: Map-Reduce
	Slide 15: Composing task into libraries and applications
	Slide 16: The Software Stack

	Hardware Design
	Slide 17: Hardware-Software System Co-design
	Slide 18: Resulting in this System Board
	Slide 19: The Software Stack
	Slide 20: Bridge D to C using templates and mixins
	Slide 21: Bridge D to C using templates and mixins
	Slide 22: The joy and pain of betterC
	Slide 23: The joy and pain of betterC
	Slide 24: The joy and pain of betterC

	Evaluation of using D
	Slide 25: The Good, The Bad And The Ugly
	Slide 26: The Good
	Slide 27: The Bad
	Slide 28: The Ugly
	Slide 29: Hacking support for MPI and HDF5
	Slide 30: Conclusion
	Slide 31

