

Crazy Plan To
Implement an AArch64 Code

Generator

by Walter Bright
https://x.com/WalterBright
DConf Aug 2025

It's insane to write another backend, but I am
doing it anyway. The D compilers come in three variants:
GDC (based on GCC), LDC (based on LLVM), and DMD
(based on Digital Mars C/C++). I've implemented code
generators for 8086, 386, 486, Pentium, Pentium Pro,
and x86_64 because I had to to get a working compiler.
The GDC and LDC D compilers already support the AArch64,
so why write another? If you are on the spectrum, this
presentation is for you!

Rationale

Advantages of DMD's Code
Generator

● It's fast
● I like to control the whole process from front to

back
– Don't want to have to extend someone else's back

end

● It's not that hard to write a code generator
– Mostly lots of details

Sometimes Crazy Things Can Have
Unexpected Results

● Like ImportC that turned out to be able to
translate C code to D code
– That was certainly not part of the plan

– I did not code it to do that

– It was discovered

– And turned out to be very valuable

● Though I cannot expect his code generator will
do something unexpected (other than bugs!)

Ok, Ok, I Admit It

● I am a nerd
● And this is going to be fun!

Simplifying Constraints

● 64 bit ARM only
● Re-use as much of the X86_64 as possible

– Register allocator

– Structure of the code generator

– Common subexpression logic

– Stack layout

– Same intermediate code

– Object file generation

– Test suite

Embarked Knowing Essentially
Nothing about the AArch64

Things To Leave Behind

● 32 bit code generation
● XMM instructions
● Op memory,immediate
● Op memory,register
● Op register,memory

More To Leave Behind

● String instructions
● Larger struct parameters (pass by ref)
● Fake “floating point” register
● LEA x+c*i+offset in one operation

Things We Cannot Leave Behind

● Complex numbers (because of C)

Godbolt.org

Disassembler

real test(real *p) {
 return *p;
}

dmd test.d -arm -vasm

0000: 3D C0 00 00 ldr q0,[x0] // ldr_imm_fpsimd.html
0004: D6 5F 03 C0 ret // encodingindex.html#branch_reg

objdump -d test.o

 0: 3dc00000 ldr q0, [x0]
 4: d65f03c0 ret

Can Mechanically Convert

● Binary => Assembler
● Binary => Spec URL
● Spec URL => Binary
● Spec URL => Assembler

But Not:

Assembler => Binary

Need to write an inline assembler for that

Instruction Layouts

● Done in “groups”
● Each group is defined by which bits are set

– With a function to encode it

● Each instruction has a function to encode it
– Which then calls its “group” function to finish it

● Generating a 32 bit value

Hex To Spec

But before the disassembler can handle the entire instruction set, one is reduced
to converting the hex to binary, and then matching the binary up with the group
patterns in the spec, one by one.

Tedious, but only has to be done once.

Nothing says auld skool like scissors, tape, pen and pencil.

ldst_pos

/* Load/store register (unsigned immediate)
 * https://www.scs.stanford.edu/~zyedidia/arm64/
 encodingindex.html#ldst_pos
 */
static uint ldst_pos(uint size, uint VR, uint opc,
 uint imm12, reg_t Rn, reg_t Vt) {
 //debug printf("imm12: %x\n", imm12);
 assert(imm12 <= 0xFFF);
 assert(VR == (Vt > 31));
 reg_t Rt = Vt & 31;
 return (size << 30) |
 (7 << 27) |
 (VR << 26) |
 (1 << 24) |
 (opc << 22) |
 (imm12 << 10) |
 (Rn << 5) |
 Rt;
}

str_imm_fpsimd

/* https://www.scs.stanford.edu/~zyedidia/arm64/str_imm_fpsimd.html
 * STR <Vt>,[<Xn|SP>,#<simm>] Unsigned offset
 */
static uint str_imm_fpsimd(uint size, uint opc, uint imm12,
 reg_t Rn, reg_t Vt)
{
 assert(imm12 < 0x1000);
 assert(size < 4);
 assert(opc < 4);
 return ldst_pos(size,1,opc,imm12,Rn,Vt);
}

Generating STR Instruction

Disassembling STR/LDR
// Load/store register (unsigned immediate)
if (field(ins, 29, 27) == 7 && field(ins, 25, 24) == 1) // #ldst_pos
{
 url = "ldst_pos";

 uint size = field(ins, 31, 30);
 uint VR = field(ins, 26, 26);
 uint opc = field(ins, 23, 22);
 uint imm12 = field(ins, 21, 10);
 uint Rn = field(ins, 9, 5);
 uint Rt = field(ins, 4, 0);

 // str_imm_gen.html STR (immediate)
 // ldr_imm_gen.html LDR (immediate)

 uint ldr(uint size, uint VR, uint opc) { return (size << 3) | (VR << 2) | opc; }

 uint factor = 4;
 const(char)* format = "%s_imm";
 switch (ldr(size, VR, opc))
 {
 case ldr(0,0,0): p1 = "strb"; goto Lldr8; // strb_imm.html
 case ldr(0,0,1): p1 = "ldrb"; goto Lldr8;
 Lldr8:
 p2 = regString(factor == 84, Rt);
 p3 = eaString(0, cast(ubyte)Rn, imm12);
 break;
...etc...

Registers
X86_64
AX BX CX DX SP BP SI DI R8..15 XMM0..31 ES NOREG ST01 ST0 STACK PSW

AArch64
r31 SP Stack Pointer
r30 LR Link Register
r29 FP Frame Pointer (BP)
r19-r28 Callee-saved registers (if Callee modifies them)
r18 Platform Register
r17 IP1 intra-procedure-call temporary register
r16 IP0 intra-procedure-call scratch register
r9-r15 temporary registers
r8 Indirect result location register
r0-r7 Parameter / result registers

Floating Point Registers
v0-v7 Parameter / result registers
v8-v15 Callee-saved registers (only bottom 64 bits need to be saved)
v16-31 Temporary registers

R0-28 … V0-24

Floating Point Types

● 16 bit
● 32 bit
● 64 bit
● 128 bit

Halfling Type

I Meant Half Float

● 16 bit floats not supported by D
● But falls out of the instruction set
● So backend is supporting it as I go, and it will

eventually find its way into D as an extension

The Q Factor

● 128 bit floating point
● 32 Q registers, from Q0..Q31
● Overlaps the V floating point registers
● Uses library functions for arithmetic
● Contents are not preserved across function calls

– Code generator does not track register types

– So we cannot use Q8..Q15, as only bottom 64 bits are
preserved

Function Calls

● Pretty ordinary
● structs <= 2 registers in size are passed in

registers
– Like Microsoft C

● Larger and non-POD are passed by reference
● Caller cleans the stack

Variadic Function Calls
void prolog_genvarargs(ref CGstate cg, ref CodeBuilder cdb, Symbol* sv)
{
 printf("prolog_genvarargs()\n");
 /* Generate code to move any arguments passed in registers into
 * the stack variable __va_argsave,
 * so we can reference it via pointers through va_arg().
 * struct __va_argsave_t {
 * ulong[8] regs; // 8 byte
 * ldouble[8] fpregs; // 16 byte
 * struct __va_list_tag // embedded within __va_argsave_t
 * {
 * void* stack; // next stack param
 * void* gr_top; // end of GP arg reg save area
 * void* vr_top; // end of FP/SIMD arg reg save area
 * int gr_offs; // offset from gr_top to next GP register arg
 * int vr_offs; // offset from vr_top to next FP/SIMD register arg
 * }
 * void* stack_args_save; // set by prolog_genvarargs()
 * }
 * The instructions seg fault if data is not aligned on
 * 16 bytes, so this gives us a nice check to ensure no mistakes.

 STR x0,[sp, #voff+0*8]
 STR x1,[sp, #voff+1*8]
 STR x2,[sp, #voff+2*8]
 STR x3,[sp, #voff+3*8]
 STR x4,[sp, #voff+4*8]
 STR x5,[sp, #voff+5*8]
 STR x6,[sp, #voff+6*8]
 STR x7,[sp, #voff+7*8]

 STR q0,[sp, #voff+8*8+0*16]
 STR q1,[sp, #voff+8*8+1*16]
 STR q2,[sp, #voff+8*8+2*16]
 STR q3,[sp, #voff+8*8+3*16]
 STR q4,[sp, #voff+8*8+4*16]
 STR q5,[sp, #voff+8*8+5*16]
 STR q6,[sp, #voff+8*8+6*16]
 STR q7,[sp, #voff+8*8+7*16]

 ADD reg,sp,Para.size+Para.offset
 STR reg,[sp,#voff+8*8+8*16+8*4] // set __va_argsave.stack_args
 */

/* Save registers into the voff area on the stack
 */
targ_size_t voff = cg.Auto.size + cg.BPoff + sv.Soffset; // EBP offset of start of sv

if (!cg.hasframe || cg.enforcealign)
 voff += cg.EBPtoESP;

regm_t namedargs = prolog_namedArgs();
printf("voff: %llx\n", voff);
foreach (reg_t x; 0 .. 8)
{
 if (!(mask(x) & namedargs)) // unnamed arguments would be the ... ones
 {
 //printf("offset: x%x %lld\n", cast(uint)voff + x * 8, voff + x * 8);
 uint offset = cast(uint)voff + x * 8;
 if (!cg.hasframe || cg.enforcealign)
 cdb.gen1(INSTR.str_imm_gen(1,x,31,offset)); // STR x,[sp,#offset]
 else
 cdb.gen1(INSTR.str_imm_gen(1,x,29,offset)); // STR x,[bp,#offset]
 }
}

... etc ...

AArch64 Literal Encoding

● A 64 bit address does not fit
● A 32 or 64 bit value does not fit
● A 32 or 64 bit floating point value does not fit

X86_64 Literal Encoding

● Has variable length instructions
● Integer literals and addresses can be easily

encoded in the instruction
● Floating point constants are loaded from

memory

Integer Literals

● orr w0,w31,#0
– mov w0,#0

● orr w0,w31,#12345
– mov w0,#12345

● movn w0,#value
– mov w0,#-value

● Two instructions to load 0x56781234
– mov w0,#1234

– movk w0,#5678,lsl #16

Floating Point Literals

● Encoded as an 8 bit floating point value!
– 7: sign bit

– 6-4: exponent

– 3-0: mantissa

● More complex ones are loaded from memory

More Complex Floats

adrp x0,0 R_AARCH64_ADR_PREL_PG_HI21 .rodata.cst4
ldr s0,[x0] R_AARCH64_LDST32_ABS_LO12_NC .rodata.cst4

Taking The Address

adrp x0, 0 R_AARCH64_ADR_PREL_PG_HI21 .bss
add x0, x0, #0x0 R_AARCH64_ADD_ABS_LO12_NC .bss

State of Play

● Linux is the target (maybe Mac Mini)
● No complex numbers
● No SIMD
● Partial half float
● No inline assembler
● Get it to work, don't worry about optimization
● Partial 128 bit floats

Conclusions

● AArch64 is not simpler than X86_64
– It is just complicated in different ways

● Mastering the instruction set is like trying to
master C++

● The way to make progress on it is to not worry
about optimal code yet

● The existing X86_64 code is a great guide to
making the AArch64 generator work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

