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Overall Goals

Fix mistakes that we can't fix in Phobos v2 without breaking
code.

Apply the lessons we've learned over the years towards
improving the design.

Improve documentation.
Improve tests.

Improve some of the symbol names.



Phobos v2 -> v3

® std.traits -> phobos.sys.traits

® std.meta -> phobos.sys.meta
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traits and meta

® __ traits and trait templates give information about symbols.

® Meta templates operate on AliasSeqs (i.e. alias sequences)



traits
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AliasSeq

dconf 2025



meta
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Some Design Choices

Avoid implicit conversions as the default (e.g. enums are not
their base type).

Have traits operate on types unless they need to operate on
symbols which aren't types.

Minimize magic.
Make what traits do as clear as possible.

Give control rather than make assumptions.
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Implicit Conversions are Problematic

A template constraint only decides whether that template will
be instantiated.

Template specializations only decide which types match that
particular overload.

Implicit conversions are not actually forced.

The code may fail to compile without the conversion, or it
may work but do the wrong thing.



Template Specialization
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Template Constraint Which Allows Enums
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isConvertibleToString

dconf 2025



Implicit Conversions

In general, to deal with implicit conversions correctly, either

1. Force the implicit conversion within the function.

2. Have a non-templated overload which takes the type being
converted to.
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Enums Are Not Their Base Type
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typeof Is Ambiguous
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typeof Is Ambiguous
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typeof Is Ambiguous
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Variables vs Functions

® The type of a variable as a symbol is the same as the type of
of a variable as an expression.

® The type of a function as a symbol is a function type.

® The type of a function as an expression is the return type of
that function - or it's not a valid expression.
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Getter Property

® A value, variable, or enum. Using it gets its value.
e A function which

1. can be called with no arguments - and thus can be called
without parens.

2. returns a value.
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Optional Parens and @property Create Ambiguity
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@property Makes Things Worse

e typeof on functions without @property gives the type of the
function itself.

e typeof on functions with @property gives the type of the
function as an expression.

» For @property getter functions, typeof gives the return type.

» For @property setter functions, typeof gives an error.
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@property Makes Things Worse

® Without @property, typeof would be consistent for all
functions.

® @property solves the problem in the wrong place.

» If code is doing type introspection on the symbol itself, it
always wants the type of the symbol itself.

» If code is trying to determine the type of the symbol within an
expression, then it always wants the type of the symbol as an
expression.
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Ideal Solution
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Actual Solution
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When to Use

e SymbolType: When getting the type of the symbol itself.

® PropertyType: When the symbol is going to be used in an
expression as a getter property.

e typeof: When getting the type of a general expression.
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Examples
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Comparing Symbols
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Comparing Symbols
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Comparing Symbols
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More Template Predicates
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Example Predicates
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Examples
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isCallable Can't Work

isCallable attempts to say whether the given symbol is
“callable.”

This works in simple cases, but in the general case, it's not
possible.

It's not possible with templated functions.
It's problematic with types.

In the general case, the only way to know if a symbol is
“callable” is to see whether calling it with actual arguments
compiles.
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Callable?
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Better Solution

Instead checking whether a symbol is “callable,” do one of

1. Test whether a function call compiles with a specific set of
arguments.

2. Have the code only operate on types and require that the type
be a function, function pointer, or delegate.
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Default Initialization

® In principle, all types in D have a default value, and if a
variable is not given an explicit value, it's default-initialized to
its init value.

® |n practice, there are corner cases where this is not true:

» Structs can disable default initialization with @disable this();

» Non-static nested structs have a context pointer.
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When T.init Is a Problem
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Incomplete Workaround
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static opCall Is a Problem
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Better Solution
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Bug in Destructor Detection
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Bug in Destructor Detection
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Workaround
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Questions?
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