A Look at Type Introspection in Phobos v3

by Jonathan M Davis

DOITIN ©

LONDON 25



dconf 2025

Overall Goals

Fix mistakes that we can't fix in Phobos v2 without breaking
code.

Apply the lessons we've learned over the years towards
improving the design.

Improve documentation.
Improve tests.

Improve some of the symbol names.



Phobos v2 -> v3

® std.traits -> phobos.sys.traits

® std.meta -> phobos.sys.meta

dconf 2025



9

dconf 2025

traits and meta

® __ traits and trait templates give information about symbols.

® Meta templates operate on AliasSeqs (i.e. alias sequences)



traits

dconf 2025



AliasSeq

dconf 2025



meta

dconf 2025



dconf 2025

Some Design Choices

Avoid implicit conversions as the default (e.g. enums are not
their base type).

Have traits operate on types unless they need to operate on
symbols which aren't types.

Minimize magic.
Make what traits do as clear as possible.

Give control rather than make assumptions.



dconf 2025

Implicit Conversions are Problematic

A template constraint only decides whether that template will
be instantiated.

Template specializations only decide which types match that
particular overload.

Implicit conversions are not actually forced.

The code may fail to compile without the conversion, or it
may work but do the wrong thing.



Template Specialization

dconf 2025



Template Constraint Which Allows Enums

dconf 2025



isConvertibleToString

dconf 2025



Implicit Conversions

In general, to deal with implicit conversions correctly, either

1. Force the implicit conversion within the function.

2. Have a non-templated overload which takes the type being
converted to.

dconf 2025 13



dconf 2025

Enums Are Not Their Base Type

14



typeof Is Ambiguous

dconf 2025

15



dconf 2025

typeof Is Ambiguous

16



typeof Is Ambiguous

dconf 2025

17



Variables vs Functions

® The type of a variable as a symbol is the same as the type of
of a variable as an expression.

® The type of a function as a symbol is a function type.

® The type of a function as an expression is the return type of
that function - or it's not a valid expression.

dconf 2025 18



[Q
|
9,

dconf 2025

Getter Property

® A value, variable, or enum. Using it gets its value.
e A function which

1. can be called with no arguments - and thus can be called
without parens.

2. returns a value.

19



Optional Parens and @property Create Ambiguity

dconf 2025

20



@property Makes Things Worse

e typeof on functions without @property gives the type of the
function itself.

e typeof on functions with @property gives the type of the
function as an expression.

» For @property getter functions, typeof gives the return type.

» For @property setter functions, typeof gives an error.

dconf 2025

21



@property Makes Things Worse

® Without @property, typeof would be consistent for all
functions.

® @property solves the problem in the wrong place.

» If code is doing type introspection on the symbol itself, it
always wants the type of the symbol itself.

» If code is trying to determine the type of the symbol within an
expression, then it always wants the type of the symbol as an
expression.

dconf 2025

22



Ideal Solution

dconf 2025

23



Actual Solution

dconf 2025

24



U

dconf 2025

When to Use

e SymbolType: When getting the type of the symbol itself.

® PropertyType: When the symbol is going to be used in an
expression as a getter property.

e typeof: When getting the type of a general expression.

25



Examples

dconf 2025

26



Comparing Symbols

dconf 2025

27



Comparing Symbols

dconf 2025



dconf 2025

Comparing Symbols

29



More Template Predicates

dconf 2025

30



Example Predicates

dconf 2025

31



dconf 2025

Examples

32



U

dconf 2025

isCallable Can't Work

isCallable attempts to say whether the given symbol is
“callable.”

This works in simple cases, but in the general case, it's not
possible.

It's not possible with templated functions.
It's problematic with types.

In the general case, the only way to know if a symbol is
“callable” is to see whether calling it with actual arguments
compiles.

33



dconf 2025

Callable?

34



Better Solution

Instead checking whether a symbol is “callable,” do one of

1. Test whether a function call compiles with a specific set of
arguments.

2. Have the code only operate on types and require that the type
be a function, function pointer, or delegate.

dconf 2025

35



E\

Default Initialization

® In principle, all types in D have a default value, and if a
variable is not given an explicit value, it's default-initialized to
its init value.

® |n practice, there are corner cases where this is not true:

» Structs can disable default initialization with @disable this();

» Non-static nested structs have a context pointer.

dconf 2025 36



dconf 2025

When T.init Is a Problem

37



dconf 2025

Incomplete Workaround

38



static opCall Is a Problem

dconf 2025



Better Solution

dconf 2025



Bug in Destructor Detection

dconf 2025



dconf 2025

Bug in Destructor Detection

42



Workaround

dconf 2025

43



dconf 2025

Questions?

44



