
Declarative Parsers in D
Ben Jones

DConf 2025

About Me

• Associate Professor, Lecturer at the University of Utah Kahlert School of
Computing since 2017

• Lots of teaching in Masters of Software Development program
(msd.utah.edu), along with many undergrad courses

• PhD from Utah in 2015 writing physics simulators for games/VFX

• Wrote C++ in grad school because everyone did

• Learned about new stuff in C++11, got excited about modern C++, ran
across Andrei's "Iterators Must Go" talk and "The Case for D" etc

http://msd.utah.edu

Caution

Not Tested In Prod

Main Challenge

ubyte[] D Structs

Inspiration

• Pegged (https://github.com/dlang-community/Pegged/)

• Define a grammar, get a parser

• The Parser produces a parse tree which you can
traverse

• Trying to learn about dmd, I was looking at the
parse.d and AST nodes and wondering if PEGGED
or similar could replace the dmd parser

https://github.com/dlang-community/Pegged/

Nobody wants a parse tree

• The Pegged generated parsers return parse trees, but I want an
Expression or FunctionDeclaration or TemplateInstance

• So to convert dmd to using Pegged would mean doing 2 passes: one to
build a parse tree, and a second to convert it into an AST

• It also means splitting parsing related code into to pieces:

• The grammar rules

• The Tree -> ASTNode conversion code

• Can we do it in one shot?

Enter Autoparsed

Autoparsed

• Structs and classes are annotated with their syntax (currently a lot less
nice than Pegged's string based grammars)

• auto parsed = parse!MyType(tokens);

• Autoparsed builds a recursive descent parser based on their annotations

• Autoparsed provides helpers for quantifiers like ?, + and *

Using Autoparsed

auto s = parse!Statement(tokenStream)

alias Statement = OneOf!(AssignmentStatement, Expression);

@Syntax!(Identifier, eq, Expression)

struct AssignmentStatement {

 this(Identifier id, Expression exp){ ... }

}

• Autoparsed generates a recursive descent parser from the annotations and definitions

• The only parsing related part of AssignmentExpression is the @Syntax annotation

• OneOf syntax rules return a SumType on success

Where do we get a token stream?
@Token:

 enum lcurly = '{';

 enum rcurly = '}';

 enum lparen = '(';

 enum rparen = ')';

 enum comma = ',';

 enum semi = ';';

 enum eq = '=';

@Syntax!(RegexPlus!(OneOf!(' ', '\t',
'\n', '\r')))

struct Whitespace{

 const(char)[] val;

}

@Syntax!(RegexPlus!(OneOf!('-',

 InRange!('a','z'), InRange!('A', 'Z'))))

struct Identifier{

 const(char)[] val;

 alias val this;

}

Where do we get a token stream?
@Token:

 enum lcurly = '{';

 enum rcurly = '}';

 enum lparen = '(';

 enum rparen = ')';

 enum comma = ',';

 enum semi = ';';

 enum eq = '=';

@Syntax!(RegexPlus!(OneOf!(' ', '\t',
'\n', '\r')))

struct Whitespace{

 const(char)[] val;

}

@Syntax!(RegexPlus!(OneOf!('-',

 InRange!('a','z'), InRange!('A', 'Z'))))

struct Identifier{

 const(char)[] val;

 alias val this;

}

Where do we get a token stream?
@Token:

 enum lcurly = '{';

 enum rcurly = '}';

 enum lparen = '(';

 enum rparen = ')';

 enum comma = ',';

 enum semi = ';';

 enum eq = '=';

@Syntax!(RegexPlus!(OneOf!(' ', '\t',
'\n', '\r')))

struct Whitespace{

 const(char)[] val;

}

@Syntax!(RegexPlus!(OneOf!('-',

 InRange!('a','z'), InRange!('A', 'Z'))))

struct Identifier{

 const(char)[] val;

 alias val this;

}

Where do we get a token stream?
@Token:

 enum lcurly = '{';

 enum rcurly = '}';

 enum lparen = '(';

 enum rparen = ')';

 enum comma = ',';

 enum semi = ';';

 enum eq = '=';

@Syntax!(RegexPlus!(OneOf!(' ', '\t',
'\n', '\r')))

struct Whitespace{

 const(char)[] val;

}

@Syntax!(RegexPlus!(OneOf!('-',

 InRange!('a','z'), InRange!('A', 'Z'))))

struct Identifier{

 const(char)[] val;

 alias val this;

}

Lexer

• Lexer is a forward range with
• alias parseRule = OneOf!(tokenTypes!Module);

• Nullable!(parseRule.NodeType) front_;

• popFront() calls parse!parseRule(bytes_) and does some error
handling

Example Grammar: Simplified S-Expression

@Token{

 enum lparen = '(';

 enum rparen = ')';

 @Syntax!(RegexPlus!(OneOf!(' ', '\t', '\r', '\n')))

 struct Whitespace {

 const(dchar)[] val;

 }

 @Syntax!(RegexPlus!(Not!(OneOf!(lparen, rparen, Whitespace)), Token))

 struct Atom {

 const(dchar)[] val;

 }

}

S-Expression Grammar

@Syntax!(lparen, RegexPlus!(OneOf!(Atom, Sexp)), rparen)

class Sexp {

public:

 this(OneOf!(Atom, Sexp).NodeType[] members_){

 members = members_;

 }

private:

 OneOf!(Atom, Sexp).NodeType[] members;

}

Example Grammars

• S-expressions

• JSON

• Simplified C-Like language

Thoughts

• Implementation of sexp class is mostly independent of its grammar

• Aside from the @Syntax annotation, there's a small leak as the
constructor takes OneOf!(Atom, Sexp).NodeType[] as a parameter

• It would be nice to return range instead of an array, but difficult because
we need to empty the range before trying to parse anything else

• My implementation is a proof of concept that seems to work. Is the idea
good?

Autoparsed vs DMD

• I sometimes look at the DMD codebase and try to find repeated patterns
which can be eliminated with a good abstraction

• Basically every parse method in DMD is shaped like "look for these items
in this order, and bail if one of them can't be parsed"

• In autoparsed, the logic for "look for these items in this order" is in one
function

• Note: dumping on DMD is not my intention, and I'm not advocating for
replacing it with autoparsed, but it provides a higher level of abstraction
that has benefits (and costs)

Benefits of Grammar as Code

• If code is broken, it won't compile, so grammar issues are discovered right away

• Code can be introspected:
pragma(msg, "syntax rules for CLike grammar");

static foreach(i, sr; SyntaxRulesFromModule!clike){

 pragma(msg, "PEG string ", i, ": " ~ RuleToPegString!sr);

}

PEG string 0LU: clike.Whitespace <- RegexPlus(OneOf(` `, `	 `, `

`))`

PEG string 1LU: clike.Identifier <- RegexPlus(OneOf(`-`, InRange(`a`, `z`), InRange(`A`, `Z`)))

PEG string 2LU: clike.Expression <- Identifier

...

PEG string 8LU: clike.IfStatement <- if_token `(` Expression `)` `{` OneOf(AssignmentStatement,
ExpressionStatement, IfStatement, WhileStatement) `}`

PEG string 9LU: clike.WhileStatement <- while_token `(` Expression `)` `{` OneOf(AssignmentStatement,
ExpressionStatement, IfStatement, WhileStatement) `}`

Grammar Parser Conflict in DMD

Almost Everything is "Quality of Implementation"

• Users of the library say almost nothing about how parsing should be
performed

• We could also generate a LR parser (I think? I haven't done it) from the
same annotations with (hopefully) no changes to our AST data types
(maybe just import autoparsed.recursivedescentlrparser)

• Error handling and lots of other aspects could be adjust/improved by the
library without users changing any of their own parsing code! Compare
that to introduction of errorSink throughout DMD!

Part 2: MP4 files

PresenterMode

Laptop Screen Projector Screen

https://github.com/benjones/presenterMode/

https://github.com/benjones/presenterMode/

MP4 format

Atom 1

Atom 2

...

tkhd

92
0
[0,0,0]

...

Sample Atom

4 char type

4 byte* size

Atom specific data}

Writing an MP4

ftyp atom

mdat

moov atom

Fixing an MP4

ftyp atom

mdat

moov atom

Valid MP4, same encoder

ftyp atom

mdat

Broken MP4

copy and repair

MP4 Documentation

...

Atom formats

• Atoms contain many fields, including other atoms

• Simple data is usually stored as big endian integers of a given size
(sometimes fixed point numbers, sometimes byte arrays)

• There are 10s of relevant atoms for the files I'm looking at

• I started trying to come up with a good representation for an atom

• Tuple(name, size, representation)[] ?

There is already a good D way of specifying
how a set of fields are laid out:

struct

Structs!

• D structs do almost everything that I want except that their memory
layout will not match the mp4 disk format

• If they did, I could just mmap the file and cast

• User code should just deal with structs which are mostly a dumb
translation from the spec

• Library code should interact with the file with mmap

• Conversion should be transparent to user code

• This turned out to be really easy in D!

Main Ingredient: opDispatch

• For each field of the atom definition, I want to access it via
myAtom.myField for both reading and writing

• This corresponds to two two opDispatch overloads
• fieldType opDispatch(string name)() if (name ==
"myField")

• void opDispatch(string name)(FieldType val) if(name ==
"myField")

• These overloads need to locate the correct offset and perform endian
conversions

Details

• We can't use the native offsetof because D structs might be padded for
alignment

• Pretty easy to compute with std.traits (FieldNameTuple, Fields)

• Some metaprogramming, but more CTFE than I expected originally

• std.bitmanip handles endianness stuff

• All implemented in auto remapped(T)(ubyte[] data)which returns a
wrapper that mimics T

• Total implementation is < 300 lines, including extra features

User code

struct S1{

 int x;

 ulong y;

 ubyte[4] d;

}

ubyte[16] data;

data[3] = 1;

auto s1r = remapped!S1(data);

assert(s1r.x == 1);

s1r.x = 0x07060504;

S1 native = cast(S1)s1r;

assert(native.x == 0x07060504);

S1 other;

other.x = 1025;

other.y = 0x7777777777;

other.d = [8,9,10,11];

s1r = other;

assert(s1r.x == 1025);

User code

struct S1{

 int x;

 ulong y;

 ubyte[4] d;

}

ubyte[16] data;

data[3] = 1;

auto s1r = remapped!S1(data);

assert(s1r.x == 1);

s1r.x = 0x07060504;

S1 native = cast(S1)s1r;

assert(native.x == 0x07060504);

S1 other;

other.x = 1025;

other.y = 0x7777777777;

other.d = [8,9,10,11];

s1r = other;

assert(s1r.x == 1025);

User code

struct S1{

 int x;

 ulong y;

 ubyte[4] d;

}

ubyte[16] data;

data[3] = 1;

auto s1r = remapped!S1(data);

assert(s1r.x == 1);

s1r.x = 0x07060504;

S1 native = cast(S1)s1r;

assert(native.x == 0x07060504);

S1 other;

other.x = 1025;

other.y = 0x7777777777;

other.d = [8,9,10,11];

s1r = other;

assert(s1r.x == 1025);

User code

struct S1{

 int x;

 ulong y;

 ubyte[4] d;

}

ubyte[16] data;

data[3] = 1;

auto s1r = remapped!S1(data);

assert(s1r.x == 1);

s1r.x = 0x07060504;

S1 native = cast(S1)s1r;

assert(native.x == 0x07060504);

S1 other;

other.x = 1025;

other.y = 0x7777777777;

other.d = [8,9,10,11];

s1r = other;

assert(s1r.x == 1025);

User code

struct S1{

 int x;

 ulong y;

 ubyte[4] d;

}

ubyte[16] data;

data[3] = 1;

auto s1r = remapped!S1(data);

assert(s1r.x == 1);

s1r.x = 0x07060504;

S1 native = cast(S1)s1r;

assert(native.x == 0x07060504);

S1 other;

other.x = 1025;

other.y = 0x7777777777;

other.d = [8,9,10,11];

s1r = other;

assert(s1r.x == 1025);

Other features

• Arrays: auto remapped(Layout: Layout[])(ubyte[] data) returns a range

• Bitfields: annotate with the field names and sizes and generate opDisptach
methods for each one

struct Packed {

 @(PackedField!("topNibble", 4),

 PackedField!("threeBits", 3),

 PackedField!("aBool", 1))

 ubyte packedByte;

}

ubyte[] bytes = [0xF2]; //1111_001_0

auto p = remapped!Packed(bytes);

assert(p.topNibble == 0xF);

assert(p.threeBits == 1);

assert(!p.aBool);

MP4 Specific Features

• remapped is a general purpose binary disk <-> d struct bridge

• D also helps with the specifics of MP4 structures

• Atom structs are annotated with @NamedAtom("wxyz")

• Using introspection, I can figure out which struct to remap the contents of an atom to based
on its 4 char type

• There's annotations to handle atoms which contain atoms or arrays of other data inside them

• My 75 line traversal function can dump the atoms tree of a file, pretty printing each atom and
all of its fields

• Each time I ran across a new item, I defined a struct, added an annotation, and it was
dumped as expected after rebuilding

Example Atom

@NamedAtom("tkhd")

struct TrackHeaderLayout {

 ubyte version_;

 ubyte[3] flags;

 uint creationTime;

 uint modificationTime;

 uint trackID;

 ubyte[4] reserved;

 uint duration;

 ubyte[8] reserved2;

 ushort layer;

...

}

Takeaways

• Structs and annotations are the most natural way to describe data

• D's metaprogramming features let programmers manipulate these
descriptions to work with externally imposed layouts

• getSymbolsByUDA is an incredible tool for making anything declarative
work

Pain Points Opportunities for Improvement

• Bugs/errors/limitations in the code powering declarative systems can be
extremely confusing for library users

• In particular, errors in opDispatch overloads lead to the overload being ignored,
so the error message suggests that no overload exists

• The errors suggest calling opDispatch!"name" directly which works, but
feels like it shouldn't be necessary

• I've gone out of my way to avoid __traits(compiles) for exactly this reason

• Possible solution would be to add overloads which don't compile to the
overload set. They can be ignored during resolution, but used for diagnostics

Template Lambdas

• Would make working with staticMap and Filter a bit nicer

• Not too onerous to create a named template, but would be nice to declare
predicates/transforms at the point of use

static foreach

• Declaring variables in static foreach blocks leads to duplicate variable
names

• You can use {{ to create a new scope, but sometimes you don't want that
either

• My go-to solution was just to rewrite common expressions over and over

• I "discovered" that a reasonable equivalent to "extract method" for
metaprogramming are template mixins

• This initially didn't work, but I fixed Issue #21429

Reflections on Metaprogramming

• I love that lots of metaprogramming tasks are actually just normal D code
run with CTFE (computing offsets, etc)

• When working with types, things start to give me C++ flashbacks

• Debugging a mess of templates can be really awful. No one wants a
"stack trace" that mentions StaticMap

• I end up spraying pragma(msg) all over my code to track bugs down

• As a professor, I've seen students printf debug (and I'm not above that),
but we can do better

A Compile Time Debugger
pragma(breakpoint)

pragma(breakpoint)

• Would pause the compiler during semantic processing and provide
limited debugging features

• backtrace -> show the current semantic analysis "stack"

• print -> dump compiler AST nodes

• continue -> return to compilation

• This seems implementable, with the biggest challenge being deciding
what nodes to expose and the language for specifying it

• Would love to hear people's thoughts about this proposal

Final thoughts

• D's combination of features enables things that just aren't possible in other
languages

• CTFE (awesome) and meta programming (powerful, but sometimes
unwieldy) allow programmers to work magic at compile time

• High quality declarative libraries make user code succinct and difficult to
write incorrectly

• Library authors need to take great care in hiding unintuitive and confusing
errors from escaping

• We can do better at helping library authors

Thank you!

• https://users.cs.utah.edu/~benjones/

• https://github.com/benjones

• Part 1 of the talk: autoparsed

• Part 2: mp4fixer.remapped

• Presenter Mode is the screen sharing tool

https://users.cs.utah.edu/~benjones/
https://github.com/benjones

