
Saying Saying NONO to save a language to save a language

Why adding features to the compiler is so hard

Dennis Korpel

DConf'25 London - August 19 2024 · Slides: DConf'25 London - August 19 2024 · Slides: https://github.com/dkorpel/dconfhttps://github.com/dkorpel/dconf

https://github.com/dkorpel/dconf

The circle of lifeThe circle of life

C++ committee says "No" to Walter Bright's proposals

Walter creates D

D Improvement Proposals (DIPs) are made

Walter says "No"

D users create new languages

22

Styx: Styx: https://gitlab.com/styx-lang/styxhttps://gitlab.com/styx-lang/styx · Neat: · Neat: https://github.com/neat-lang/neathttps://github.com/neat-lang/neat 33

https://gitlab.com/styx-lang/styx
https://github.com/neat-lang/neat

Can't Walter just say yes?Can't Walter just say yes?

Dr. No (1962) - United Artists · Yes Man (2008) - Warner Bros. PicturesDr. No (1962) - United Artists · Yes Man (2008) - Warner Bros. Pictures 44

About meAbout me

Pull Request and Issue manager since 2022

Want a small, stable programming language

Also inclined to say

55

ContentsContents

How features add complexity

How to make better improvement proposals

How to refactor code to reduce technical debt

66

D is too complexD is too complex

Makes it harder to use/maintain

How did it become this way?

https://alexgaynor.net/2020/nov/30/why-software-ends-up-complex/https://alexgaynor.net/2020/nov/30/why-software-ends-up-complex/ 77

https://alexgaynor.net/2020/nov/30/why-software-ends-up-complex/

Simplicity gets dismissedSimplicity gets dismissed

Features are naturally additive

Supporters claim concrete benefits

Detractors claim abstract drawbacks

Sounds like exaggerating

Add 1% a hundred times and you triple the size

(Exponential growth)

88

Not all compiler stages are equalNot all compiler stages are equal

Parsing → Semantic Analysis → Code generation

Parsing

~10 KLOC in dmd, 'solved' problem

Code generation

Outsourced to LLVM, GCC, or Walter Bright

~100 KLOC in dmd

Semantic analysis

~200 KLOC, 'heart' of the D language
99

"Semantic" is"Semantic" is

the trouble spotthe trouble spot

But what is it?

Pictured: ArcelorMittal OrbitPictured: ArcelorMittal Orbit 1010

It's tree rewritingIt's tree rewriting

x + y * 0

Tree form:

 + + x

 x * → x 0 →

 y 0

/ \ / \

/ \

1111

Just recursion and if-statementsJust recursion and if-statements

Expression semantic(Expression exp)
{
 exp.lhs = semantic(exp.lhs);
 exp.rhs = semantic(exp.rhs);

 if (exp.kind == MULTIPLICATION && exp.rhs == Expression(0))
 return Expression(0);

 if (exp.kind == ADDITION && exp.rhs == Expression(0))
 return exp.lhs;
}

...Multiplied by 20000

1212

Example of implementation woesExample of implementation woes

Command to run unittests for single module:

dmd -i -unittest -main -run foo.d

-unittest only compiles in unittest {} functions

-main implicitly adds void main() {}

What if foo.d already has a main ?

Error: only one main allowed

Enhancement request: only add empty main when needed

https://github.com/dlang/dmd/pull/13057https://github.com/dlang/dmd/pull/13057 1313

https://github.com/dlang/dmd/pull/13057

Contributions become harderContributions become harder

First question: How to find existing main?

In C, this could be a simple check in the parser

In D, consider mixin static if (X) import

Parsing is too early

Check for main in code generator?

Too late, backend is separate from frontend

Another question: what is main ?

1414

1515

1616

1717

Once it's in there, it staysOnce it's in there, it stays

Working on final switch -related code, I discovered:

switch case statement can be runtime int variable

enum can enumerate struct with opBinary!"+"

Can we remove these please?

Breaks existing code

1818

All behaviors are depended onAll behaviors are depended on

Hyrum’s Law:

D exposes compiler internals (.stringof , .mangleof , etc.)

D users unittest those internals

Even dmd -v verbose output depended on by rdmd

With a sufficient number of users of an API, it does not matter

what you promise in the contract: All observable behaviors of

your system will be depended on by somebody.

“
“

https://www.hyrumslaw.com/https://www.hyrumslaw.com/ 1919

https://github.com/dlang/dmd/pull/20873
https://github.com/dlang/dmd/pull/20873
https://github.com/dlang/dmd/pull/20873
https://www.hyrumslaw.com/

https://github.com/dlang/tools/blob/4d4a2798b6f89befbdbc766b8284aae229c3c66b/rdmd.d#L657https://github.com/dlang/tools/blob/4d4a2798b6f89befbdbc766b8284aae229c3c66b/rdmd.d#L657 2020

https://github.com/dlang/tools/blob/4d4a2798b6f89befbdbc766b8284aae229c3c66b/rdmd.d#L657

How features add complexity (conclusion)How features add complexity (conclusion)

We add more than we remove

Compiler development becomes harder/slower

But: 'never add any features' is not a solution either

It's 2025, where are my tuples and sum types!“ “

2121

5 tips for improvement proposals5 tips for improvement proposals

Pictured: Battersea power stationPictured: Battersea power station 2222

#1 - Include real usage examples#1 - Include real usage examples

Why?

"For when you want to know whether code is reachable"

"Why not"

Code example of usage in context

GitHub link to production code that needs it

Let's add magic __REACHABLE__ boolean“ “

2323

#2 - Inspire errors by real bugs#2 - Inspire errors by real bugs

Have you considered: templates, conditional compilation,

debugging, version control, dustmite...

Yes, footguns like if (x = 3) exist

But: removing composition = more complexity

Why is this combination useful? Let's ban it.

GitHub/Forum links to bugs caused by this

Unreachable code is useless, it should be an error“ “

2424

#3 - Avoid warnings#3 - Avoid warnings

Warnings pile up, get drowned out

If an error won't do, we could make it a warning instead“ “

2525

2626

#3 - Avoid warnings#3 - Avoid warnings

Has its own problems with false positives, updates, etc.

switch (x)
{
 ...
 case 1:
 abort();
 break; // unreachable code
 ...
}

Then treat warnings as errors in 'production builds'“ “

2727

#4 - More options ≠ better#4 - More options ≠ better

Hot take: All command line switches are bugs

Google Translate has 1 billion users

So it must have tons of options?

google-translate
 --fix-spelling
 --word-wrap-columns=80
 --oxford-comma
 --custom-substitutions="onigiri/jelly-donut"

Can't be bad to give users the option with -fno-unreachable-code“ “

2828

https://translate.google.com/https://translate.google.com/ · · https://dkorpel.github.io/ctod/https://dkorpel.github.io/ctod/ 2929

https://translate.google.com/
https://dkorpel.github.io/ctod/

#4 - More options ≠ better#4 - More options ≠ better

ctod used to have a --strip-comments

Now it has 0 flags

Viable for dmd?

Make each program do one thing well. To do a new job, build

afresh rather than complicate old programs by adding new

"features".

“
“

https://archive.org/details/bstj57-6-1899/mode/2uphttps://archive.org/details/bstj57-6-1899/mode/2up 3030

https://archive.org/details/bstj57-6-1899/mode/2up

#5 - Look for the root problem#5 - Look for the root problem

Often library solutions exist

Disliked because:

Requires imports

Worse performance

Bad errors messages

Ugly syntax

3131

#5 - Look for the root problem#5 - Look for the root problem

Often library solutions exist

Disliked because:

Requires imports (prelude modules?)

Worse performance (optimized debug builds?)

Bad errors messages (diagnostic message attributes?)

Ugly syntax (new operator overloading?)

3232

#5 - Look for the root problem#5 - Look for the root problem

Historical trends:

FORTRAN/COBOL → C/C++

Fixed graphics pipelines → shaders → GPGPU

Complex number type in C/D → SIMD, operator overloading

Look for general building blocks

3333

Better improvement proposals (conclusion)Better improvement proposals (conclusion)

Motivate by real world problems

Find the root cause

Offer a confident solution

warnings/options should be last resort

3434

ReducingReducing

technical debttechnical debt

Picture: Lane7 Camden, London - "Play Dirty"Picture: Lane7 Camden, London - "Play Dirty" 3535

An unstable foundation suppliesAn unstable foundation supplies

unlimited bug reportsunlimited bug reports

Whack-a-mole bug fixing

if (the_code == code_from_issue) do_the_desired_thing_instead()

Result: incpomplete, redundant solutions:

ctfe , ctfeBlock , ctfeOnly

maybeScope , doNotInferScope

"The existing code was a hack, so I had to add my own hack"

3636

More passing test cases != progressMore passing test cases != progress

Local optimum where common cases succeed

Can be useful for experimentation

At some point, sound solution must be found

Wrong fixes must be undone

Example of undoing a wrong fix: Example of undoing a wrong fix: https://github.com/dlang/dmd/pull/13972https://github.com/dlang/dmd/pull/13972 3737

https://github.com/dlang/dmd/pull/13972

Factor out common codeFactor out common code

Arithmetic operators type check almost identically

Differences are often bugs

Expression semantic for >>> and >> used to be copy-pasta

3838

3939

Reuse isn't always correctReuse isn't always correct

Consider bool hasPointers(Type t)

int → false

int* → true

struct S { int x; string y; } → true

void[8] → ?

Depends! Conservative GC scanning or @safe checks?

4040

Avoid boolean parametersAvoid boolean parameters

bool hasPointers(Type t, bool usedForGcScanning)
{
 ...
 if (usedForGcScanning)
 if (t.kind == Tarray && t.next.kind == Tvoid)
 return true;
 ...
}

4141

Spaghetti ensuesSpaghetti ensues

Semantic for opAssign , opEquals , opBinary , opUnary

All funneled through 300 line overload() function

if (e.op == EXP.plusPlus || e.op == EXP.minusMinus)
{
 // Bug4099 fix
 if (ad1 && search_function(ad1, Id.opUnary))
 return null;
}
if (e.op != EXP.equal && e.op != EXP.notEqual &&
 e.op != EXP.assign && e.op != EXP.plusPlus && e.op != EXP.minusMinus)
{
 // Try opBinary and opBinaryRight
}

4242

Cutting upCutting up

doesn't helpdoesn't help

Now you just have 5

incomprehensible

functions

Separate the code paths

instead

4343

Expression overload(Expression e)
{
 string name = "opBinary";
 if (e.op == "==")
 name = "opEquals";

 auto result = new CallExpression(name);
 if (e.op != "==")
 result.addTemplateArgs([e.op]);

 result.addArgs([e.lhs, e.rhs]);
 return result;
}

4444

Expression overloadBinary(Expression e)
{
 string name = "opBinary";
 if (e.op == "==")
 name = "opEquals";

 auto result = new CallExpression(name);
 if (e.op != "==")
 result.addTemplateArgs([e.op]);

 result.addArgs([e.lhs, e.rhs]);
 return result;
}

4545

Expression overloadBinary(Expression e)
{
 string name = "opBinary";
 if (false)
 name = "opEquals";

 auto result = new CallExpression(name);
 if (true)
 result.addTemplateArgs([e.op]);

 result.addArgs([e.lhs, e.rhs]);
 return result;
}

4646

Expression overloadBinary(Expression e)
{
 string name = "opBinary";
 auto result = new CallExpression(name);
 if (true)
 result.addTemplateArgs([e.op]);

 result.addArgs([e.lhs, e.rhs]);
 return result;
}

4747

Expression overloadBinary(Expression e)
{
 string name = "opBinary";
 auto result = new CallExpression(name);

 result.addTemplateArgs([e.op]);

 result.addArgs([e.lhs, e.rhs]);
 return result;
}

4848

Expression overloadBinary(Expression e)
{
 string name = "opBinary";
 auto result = new CallExpression(name);
 result.addTemplateArgs([e.op]);
 result.addArgs([e.lhs, e.rhs]);
 return result;
}

4949

Expression overloadBinary(Expression e)
{
 string name = "opBinary";
 auto result = new CallExpression(name);
 result.addTemplateArgs([e.op]);
 result.addArgs([e.lhs, e.rhs]);
 return result;
}

5050

Expression overloadBinary(Expression e)
{
 auto result = new CallExpression("opBinary");
 result.addTemplateArgs([e.op]);
 result.addArgs([e.lhs, e.rhs]);
 return result;
}

Expression overloadEquals(Expression e)
{
 auto result = new CallExpression("opEquals");
 result.addArgs([e.lhs, e.rhs]);
 return result;
}

5151

Expression overloadBinary(Expression e)
{
 return callOpOverload("opBinary", [e.op], [e.lhs, e.rhs]);
}

Expression overloadEquals(Expression e)
{
 return callOpOverload("opEquals", [], [e.lhs, e.rhs]);
}

Expression callOpOverload(string name, Expression[] tiArgs, Expression[] args)
{
 auto result = new CallExpression(name);
 result.addTemplateArgs(tiArgs);
 result.addArg(args);
 return result;
}

5252

Expression overload(Expression e)
{
 string name = "opBinary";
 if (e.op == "==")
 name = "opEquals";

 auto result = new CallExpression(name);
 if (e.op != "==")
 result.addTemplateArgs([e.op]);

 result.addArg(e.lhs);
 result.addArg(e.rhs);
 return result;
}

5353

Reducing technical debt (conclusion)Reducing technical debt (conclusion)

Code duplication and premature abstraction can both be bad

When you can't get away with duct tape solutions:

Expand intertwined code paths

Trim dead branches

Factor out common code again

https://dlang.org/changelog/2.111.0.html#dmd.error-messageshttps://dlang.org/changelog/2.111.0.html#dmd.error-messages 5454

https://dlang.org/changelog/2.111.0.html#dmd.error-messages

TakeawaysTakeaways

There is a limited complexity budget for features

Strong proposals spend little to solve real problems

Pay off technical debt to expand your budget

Don't take the "No" personal

5555

Questions?Questions?

5656

