N\ WEKA

Tuesday, 19st August 2025

D at WEKA,
World’s Fastest Data Platform

EyalLotem
WEKA

WEKA

Background

m\World's fastest, distributed, parallel file system and data platform
mFounded in 2014

mSoftware-only

mSolves some of the toughest technical challenges

mExabyte scale, terabytes/sec at sub-millisecond latencies

m The most interesting customers in the world!

N\ WEKA

WEKA

intro

m\Weka uses D for many domains:
e Networking
e Hardware abstraction
e Clustering
e Filesystem logic
e Software RAID
e RAFT

N\ WEKA

WEKA

intro

m\Weka uses D for many domains:
e Networking
e Hardware abstraction
e Clustering
e Filesystem logic
e Software RAID
e RAFT

e And much much more!

N\ WEKA

D @ Weka

RPC

mVirtually all network traffic is remote procedure calls (RPCs)
mEfficiency is critical
mBinary protocol

mBased on homegrown performance-optimized network stack

N\ WEKA

D @ Weka

RPC

mDeclare via a regular D interface

mEfficient RPC client & server code auto-generated from interface

mServer is a struct that implements the interface

mClient uses opDispatch to transparently call remote methods with the ease of local calls
mInput/ref parameters are serialized by client

mRef/out parameters and return value are serialized by server

N\ WEKA

D @ Weka

RPC

interface IRaftService {
RequestVoteReply requestVote (RaftId, RequestVoteRequest) ;

AppendEntriesReply appendEntries (RaftId, AppendEntriesRequest, InSGData) ;

InstallSnapshotReply installSnapshot (RaftId, InstallSnapshotChunkRequest) ;
void stepDown (RaftId, NodelId) ;

void ping(RaftId) ;

N\ WEKA

D @ Weka

RPC

interface IRaftService {
RequestVoteReply requestVote (RaftId, RequestVoteRequest) ;

@notrace (@rpcEncryptAllBuffers
AppendEntriesReply appendEntries (RaftId, AppendEntriesRequest, InSGData) ;

@rpcEncryptAllBuffers
InstallSnapshotReply installSnapshot (RaftId, InstallSnapshotChunkRequest) ;

void stepDown (RaftId, NodelId) ;

void ping(RaftId) ;

N\ WEKA

D @ Weka

Upgrading

mCustomers want new features
m\Weka operates at huge scales, sometimes thousands of servers in a cluster, 100Ks of clients
mDisruption to workload during upgrade is unacceptable

m The only practical way to upgrade at scale is rolling/incremental upgrade

N\ WEKA

D @ Weka

Upgrading non-disruptively

mCustomers want new features
m\Weka operates at huge scales, sometimes thousands of servers in a cluster, 100Ks of clients
mDisruption to workload during upgrade is unacceptable

m The only practical way to upgrade at scale is rolling/incremental upgrade

N\ WEKA

D @ Weka

Upgrading non-disruptively

/RPC
r 3
wekanode

wekanode

r

RPC

D @ Weka

Upgrading non-disruptively

Exascale up rade
must roll/

[wekanoo(e] [wekar\oa(e wekomoo(e wekanoo(ej

D @ Weka

Upgrading non-disruptively

RP

Eancale. up rade
must rol /

wekomoo(e] wekanode we.komoo(ej

\

D @ Weka

Upgrading non-disruptively

Eancale up rade
must rol /

' wekanoo(ej wekanode wekanoo(ej

\

D @ Weka

Upgrading non-disruptively

Eancale. up rade
must rol’

éé\/\

wekanode wekanoo(e]

&

D @ Weka

Upgrading non-disruptively

Eancale up rade
must rol /

So=s

N\ WEKA

D @ Weka

Upgrading non-disruptively

b ik e K\

— RPC

/\/\/\

[wekomoo(e) [wekanoa(e. wekanoo(e. wekomoolej

Persistent
Structures

N\ WEKA

D @ Weka

Upgrading non-disruptively

m\We modify our structures all the time!
mHow can we retain compatibility across versions?
mUpgrade persistent data structures

mUpgrade RPC calls from old RPC clients

N\ WEKA

D @ Weka

Upgrading non-disruptively

m\We modify our structures all the time!

mHow can we retain compatibility across versions?
mUpgrade persistent data structures

mUpgrade RPC calls from old RPC clients

mDowngrade RPC calls to old RPC servers

N\ WEKA

D @ Weka

Upgrading non-disruptively

m\We modify our structures all the time!

mHow can we retain compatibility across versions?
mUpgrade persistent data structures

mUpgrade RPC calls from old RPC clients

mDowngrade RPC calls to old RPC servers

mHow does Weka achieve this?

N\ WEKA

D @ Weka

Ref-types as schemas

mD metaprogramming to the rescue!

mRecursively iterate all persistent & RPC types

mDump their descriptions to a “ref-types” JSON file

mConvert these JSON files to .d “old type” and “old interface” declarations
mThis is essentially the “schema” of a specific version

mRef-types for each supported source version in repository

mUpgrade/downgrade from/to an old version remains high-performance binary

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade

mRPC server should upgrade all inputs and downgrade all outputs
mRPC client should downgrade all inputs and upgrade all outputs

mPersistent data structures should be upgraded

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade

mWe want to automate as much of this as possible

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade

mWe want to automate as much of this as possible

mRecursively compare old & current data types

e Any modifications must be accompanied by UDAs (@newField, @removedField, ...)

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade

mWe want to automate as much of this as possible

mRecursively compare old & current data types
e Any modifications must be accompanied by UDAs (@newField, @removedField, ...)

e Otherwise, compilation errors arise

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

struct File {
Time atime, ctime, mtime;

/...

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

struct File {
Time atime, ctime, mtime;

/...

mFeature request: Add “birth time” to files

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

struct File {
Time atime, ctime, mtime, btime;

/...

mFeature request: Add “birth time” to files

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

struct File {
Time atime, ctime, mtime, btime;

//

ERROR:

file.d(100): field 'btime' was added. To allow upgrade, use (@newField!<ver>("btime") or
file.d(100) : add a custom upgrade method.

convert.d(161) : Error: static assert: '"cannot upgrade weka.file.File"

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

@newField!V4 4 11 (“btime”)
struct File {
Time atime, ctime, mtime, btime;

//

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

@newField!V4 4 11 (“btime”)
struct File {
Time atime, ctime, mtime, btime;

//

r

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

mProduct says: “btime” should not be zero on upgrade!

mUse minimum of existing times as an approximation

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

struct File {
Time atime, ctime, mtime, btime;

/...

N\ WEKA

D @ Weka

Automatic Upgrade/Downgrade - Example

struct File {
Time atime, ctime, mtime, btime;
void upgradeFieldFrom(string field: “btime”, 01ld) (ref const(01ld) old) {

this.btime = min(old.atime, old.ctime, old.mtime) ;

}
//

N\ WEKA

D @ Weka

Upgrade Summary

mWeka has successfully non-disruptively upgraded customers thousands of times
mln practice clusters may mix more than just 2 versions

mSeamless binary upgrade/downgrade

N\ WEKA

D @ Weka

Custom Compilation Errors

struct Location {
string filename;
uint line;
uint column;

N\ WEKA

D @ Weka

Custom Compilation Errors

struct Location {
string filename;
uint line;

uint column;
static auto of(alias Decl) () { return Location(__traits(getLocation, Decl)); }

N\ WEKA

D @ Weka

Custom Compilation Errors

struct Location {
string filename;
uint line;

uint column;
static auto of(alias Decl) () { return Location(__traits(getLocation, Decl)); }

string message(string msg) { return format!"%s(%s): %s" (filename, line, msqg); }

N\ WEKA

D @ Weka

Custom Compilation Errors

struct Location {
string filename;
uint line;
uint column;
static auto of(alias Decl) () { return Location(__traits(getLocation, Decl)); }
string message(string msg) { return format!"%s(%s): %s" (filename, line, msqg); }

struct Struct {
int field;

enum Location location = Location.of! (Struct.field);
pragma (msg, location.message("HI!"));

N\ WEKA

D @ Weka

Custom Compilation Errors

struct Location {
string filename;
uint line;
uint column;
static auto of(alias Decl) () { return Location(__traits(getLocation, Decl)); }
string message(string msg) { return format!"%s(%s): %s" (filename, line, msqg); }

struct Struct {
int field; // testlocation.d(12): HI!

enum Location location = Location.of! (Struct.field);
pragma (msg, location.message("HI!"));

$ dmd location.d
testlocation.d(12) : HI!

N\ WEKA

CTFEUT

Unit Tests

m\Weka is a BIG software project
mSome modules have quite heavy subsystem dependencies
mCompiling and linking Unit Test executables for large subsystems can take a long while!

mThis is painful when developing and running UTs

N\ WEKA

CTFEUT

Unit Tests

m\Weka is a BIG software project
mSome modules have quite heavy subsystem dependencies
mCompiling and linking Unit Test executables for large subsystems can take a long while!

mThis is painful when developing and running UTs

auto ut(alias F) () {
bool check () {

F();
return true;

}

assert (check()) ;
static assert(check());

N\ WEKA

CTFEUT

Unit Tests

m\Weka is a BIG software project
mSome modules have quite heavy subsystem dependencies
mCompiling and linking Unit Test executables for large subsystems can take a long while!

mThis is painful when developing and running UTs

auto ut(alias F) () {
bool check () {

F();
return true;

}

assert (check()) ; // Execute the "F° function in runtime
static assert(check());

N\ WEKA

CTFEUT

Unit Tests

m\Weka is a BIG software project
mSome modules have quite heavy subsystem dependencies
mCompiling and linking Unit Test executables for large subsystems can take a long while!

mThis is painful when developing and running UTs

auto ut(alias F) () {
bool check () {

F();
return true;

}
assert (check()) ; // Execute the "F° function in runtime
static assert(check()); // Execute the "F° function in CTFE

N\ WEKA

CTFEUT

Unit Tests - Example

int fib(int idx) {
auto cur = 0;
auto next = 1;
foreach(i; 0..idx) {
auto add = cur + next;
cur = next;
next = add;

}

return cur;

N\ WEKA

CTFEUT

Unit Tests - Example

unittest {

assert (£fib(0) == 0);
assert (£fib(2) == 1);
assert (fib(5) == 5);
assert(fib(-1) == 0);

N\ WEKA

CTFEUT

Unit Tests at compile time - Example

unittest {
ut! ({ // this UT will now run in CTFE & runtime

assert (£fib(0) == 0);
assert (£fib(2) == 1);
assert (fib(5) == 5);
assert(fib(-1) == 0);

})

N\ WEKA

CTFEUT

Unit Tests at compile time - Example

unittest {
ut! ({ // this UT will now run in CTFE & runtime

assert (£fib(0) == 0);
assert (£fib(2) == 1);
assert (fib(5) == 5);
assert(fib(-1) == 0);

})

BONUS: Semantics of CTFE may differ from runtime, this can detect issues.

N\ WEKA

CTFEUT

Unit Tests at compile time - Example

unittest {
ut! ({ // this UT will now run in CTFE & runtime

assert (£fib(0) == 0);
assert (£fib(2) == 1);
assert (fib(5) == 5);
assert(fib(-1) == 0);

})

BONUS: Semantics of CTFE may differ from runtime, this can detect issues.

if(_ ctfe) ..bug..

N\ WEKA

CTFEUT

Unit Tests at compile time - Debugging

mgdb style debugging is not possible in CTFE
mpragma (msg, ..) is only usable for template parameters and values declared as enum

mHowever, print-based debugging is possible with core.builtins. ctfeWrite:

/// Writes “s° to “stderr’ during CTFE (does nothing at runtime).
void _ ctfeWrite(scope const(char)[] s) @nogc @safe pure nothrow {}

N\ WEKA

CTFEUT

Unit Tests at compile time - Debugging

mgdb style debugging is not possible in CTFE
mpragma (msg, ..) is only usable for template parameters and values declared as enum

mHowever, print-based debugging is possible with core.builtins. ctfeWrite:

/// Writes “s° to “stderr during CTFE (does nothing at runtime).
void _ ctfeWrite(scope const(char)[] s) @nogc @safe pure nothrow {}

AA% may require GC string formatting

N\ WEKA

CTFEUT

Unit Tests at compile time - Debugging

m\Wrapper to allow @nogc nothrow use:

@safe @nogc pure nothrow
auto ctfeWrite(string fmt, Args...) (auto ref Args args) ({
if (! ctfe) return;

// what happens in CTFE stays in CTFE...

string s = as!'"(@safe @nogc pure nothrow" (() => format!fmt (args))
__ctfeWrite(s);

N\ WEKA

Cheating the compiler

as

as!"@safe @nogc pure nothrow" ({ .. code .. });

N\ WEKA

Cheating the compiler

as

as!"@safe @nogc pure nothrow" ({ .. code .. });

mNeeded when incrementally introducing @nogc to a large project

mNeeded for legitimate edge cases (such as ctfeWrite, assert failure case, ...)

N\ WEKA

Typed Identifiers

alias DiskId = TypedIdentifier! ("DiskId", ushort, ushort.max, ushort.max);
alias InodeId = TypedIdentifier! ("InodeId", ulong, 0, 0, FMT("Ox{_ value!%01l6x}"));
alias FSId = TypedIdentifier! ("FSId", uint, uint.max, uint.max);

N\ WEKA

Typed Identifiers

alias DiskId = TypedIdentifier! ("DiskId", ushort, ushort.max, ushort.max);
alias InodeId = TypedIdentifier! ("InodeId", ulong, 0, 0, FMT("Ox{_ value!%01l6x}"));
alias FSId = TypedIdentifier! ("FSId", uint, uint.max, uint.max);

mConfused two identifiers? Compiler error
mGreat as documentation
mNicer string formatting

mCan efficiently search all traces about DiskId<5> or InodeId<0x..>

N\ WEKA

Manual Overrides

auto timeout = manualOverride.getValue! (“cluster.raft timeout”, 1500.msecs);
Easy to use
This use of getvalue is all that's needed to declare this override
Listable:
$ weka debug override list-keys
statically typed:

$ weka debug override add --key cluster.raft timeou --value ‘“abc”’
error: Override Key cluster.raft timeou not found

$ weka debug override add --key cluster.raft timeout --value ‘“abc”’
error: value of type Duration expected for this override: Got "abc"

Runtime-efficient: compiles to reading a single gshared variable

N\ WEKA

Than You!

AN WEKA

