
D at WEKA,
World’s Fastest Data Platform
 Eyal Lotem
WEKA

 Tuesday, 19st August 2025

WEKA
Background

■World's fastest, distributed, parallel file system and data platform

■Founded in 2014

■Software-only

■Solves some of the toughest technical challenges

■Exabyte scale, terabytes/sec at sub-millisecond latencies

■The most interesting customers in the world!

WEKA
Intro

■Weka uses D for many domains:

● Networking

● Hardware abstraction

● Clustering

● Filesystem logic

● Software RAID

● RAFT

WEKA
Intro

■Weka uses D for many domains:

● Networking

● Hardware abstraction

● Clustering

● Filesystem logic

● Software RAID

● RAFT

● And much much more!

D @ Weka
RPC

■Virtually all network traffic is remote procedure calls (RPCs)

■Efficiency is critical

■Binary protocol

■Based on homegrown performance-optimized network stack

D @ Weka
RPC

■Declare via a regular D interface

■Efficient RPC client & server code auto-generated from interface

■Server is a struct that implements the interface

■Client uses opDispatch to transparently call remote methods with the ease of local calls

■Input/ref parameters are serialized by client

■Ref/out parameters and return value are serialized by server

D @ Weka
RPC

interface IRaftService {
 RequestVoteReply requestVote(RaftId, RequestVoteRequest);

 AppendEntriesReply appendEntries(RaftId, AppendEntriesRequest, InSGData);

 InstallSnapshotReply installSnapshot(RaftId, InstallSnapshotChunkRequest);

 void stepDown(RaftId, NodeId);

 void ping(RaftId);
}

D @ Weka
RPC

interface IRaftService {
 RequestVoteReply requestVote(RaftId, RequestVoteRequest);

 @notrace @rpcEncryptAllBuffers
 AppendEntriesReply appendEntries(RaftId, AppendEntriesRequest, InSGData);

 @rpcEncryptAllBuffers
 InstallSnapshotReply installSnapshot(RaftId, InstallSnapshotChunkRequest);

 void stepDown(RaftId, NodeId);

 void ping(RaftId);
}

D @ Weka
Upgrading

■Customers want new features

■Weka operates at huge scales, sometimes thousands of servers in a cluster, 100Ks of clients

■Disruption to workload during upgrade is unacceptable

■The only practical way to upgrade at scale is rolling/incremental upgrade

D @ Weka
Upgrading non-disruptively

■Customers want new features

■Weka operates at huge scales, sometimes thousands of servers in a cluster, 100Ks of clients

■Disruption to workload during upgrade is unacceptable

■The only practical way to upgrade at scale is rolling/incremental upgrade

D @ Weka
Upgrading non-disruptively

D @ Weka
Upgrading non-disruptively

D @ Weka
Upgrading non-disruptively

D @ Weka
Upgrading non-disruptively

D @ Weka
Upgrading non-disruptively

D @ Weka
Upgrading non-disruptively

D @ Weka
Upgrading non-disruptively

D @ Weka
Upgrading non-disruptively

■We modify our structures all the time!

■How can we retain compatibility across versions?

■Upgrade persistent data structures

■Upgrade RPC calls from old RPC clients

D @ Weka
Upgrading non-disruptively

■We modify our structures all the time!

■How can we retain compatibility across versions?

■Upgrade persistent data structures

■Upgrade RPC calls from old RPC clients

■Downgrade RPC calls to old RPC servers

D @ Weka
Upgrading non-disruptively

■We modify our structures all the time!

■How can we retain compatibility across versions?

■Upgrade persistent data structures

■Upgrade RPC calls from old RPC clients

■Downgrade RPC calls to old RPC servers

■How does Weka achieve this?

D @ Weka
Ref-types as schemas

■D metaprogramming to the rescue!

■Recursively iterate all persistent & RPC types

■Dump their descriptions to a “ref-types” JSON file

■Convert these JSON files to .d “old type” and “old interface” declarations

■This is essentially the “schema” of a specific version

■Ref-types for each supported source version in repository

■Upgrade/downgrade from/to an old version remains high-performance binary

D @ Weka
Automatic Upgrade/Downgrade

■RPC server should upgrade all inputs and downgrade all outputs

■RPC client should downgrade all inputs and upgrade all outputs

■Persistent data structures should be upgraded

D @ Weka
Automatic Upgrade/Downgrade

■We want to automate as much of this as possible

D @ Weka
Automatic Upgrade/Downgrade

■We want to automate as much of this as possible

■Recursively compare old & current data types

● Any modifications must be accompanied by UDAs (@newField, @removedField, …)

D @ Weka
Automatic Upgrade/Downgrade

■We want to automate as much of this as possible

■Recursively compare old & current data types

● Any modifications must be accompanied by UDAs (@newField, @removedField, …)

● Otherwise, compilation errors arise

D @ Weka
Automatic Upgrade/Downgrade - Example

struct File {
 Time atime, ctime, mtime;
 // ...
}

D @ Weka
Automatic Upgrade/Downgrade - Example

struct File {
 Time atime, ctime, mtime;
 // ...
}

■Feature request: Add “birth time” to files

D @ Weka
Automatic Upgrade/Downgrade - Example

struct File {
 Time atime, ctime, mtime, btime;
 // ...
}

■Feature request: Add “birth time” to files

D @ Weka
Automatic Upgrade/Downgrade - Example

struct File {
 Time atime, ctime, mtime, btime;
 // ...
}

ERROR:
file.d(100): field 'btime' was added. To allow upgrade, use @newField!<ver>("btime") or
file.d(100): add a custom upgrade method.
convert.d(161): Error: static assert: "cannot upgrade weka.file.File"

D @ Weka
Automatic Upgrade/Downgrade - Example

@newField!V4_4_11(“btime”)
struct File {
 Time atime, ctime, mtime, btime;
 // ...
}

D @ Weka
Automatic Upgrade/Downgrade - Example

@newField!V4_4_11(“btime”)
struct File {
 Time atime, ctime, mtime, btime;
 // ...
}

✅

D @ Weka
Automatic Upgrade/Downgrade - Example

■Product says: “btime” should not be zero on upgrade!

■Use minimum of existing times as an approximation

D @ Weka
Automatic Upgrade/Downgrade - Example

struct File {
 Time atime, ctime, mtime, btime;

 // ...
}

D @ Weka
Automatic Upgrade/Downgrade - Example

struct File {
 Time atime, ctime, mtime, btime;
 void upgradeFieldFrom(string field: “btime”, Old)(ref const(Old) old) {
 this.btime = min(old.atime, old.ctime, old.mtime);
 }
 // ...
}

D @ Weka
Upgrade Summary

■Weka has successfully non-disruptively upgraded customers thousands of times

■In practice clusters may mix more than just 2 versions

■Seamless binary upgrade/downgrade

D @ Weka
Custom Compilation Errors

struct Location {
 string filename;
 uint line;
 uint column;

}

D @ Weka
Custom Compilation Errors

struct Location {
 string filename;
 uint line;
 uint column;
 static auto of(alias Decl)() { return Location(__traits(getLocation, Decl)); }

}

D @ Weka
Custom Compilation Errors

struct Location {
 string filename;
 uint line;
 uint column;
 static auto of(alias Decl)() { return Location(__traits(getLocation, Decl)); }
 string message(string msg) { return format!"%s(%s): %s"(filename, line, msg); }
}

D @ Weka
Custom Compilation Errors

struct Location {
 string filename;
 uint line;
 uint column;
 static auto of(alias Decl)() { return Location(__traits(getLocation, Decl)); }
 string message(string msg) { return format!"%s(%s): %s"(filename, line, msg); }
}

struct Struct {
 int field;
}

enum Location location = Location.of!(Struct.field);
pragma(msg, location.message("HI!"));

D @ Weka
Custom Compilation Errors

struct Location {
 string filename;
 uint line;
 uint column;
 static auto of(alias Decl)() { return Location(__traits(getLocation, Decl)); }
 string message(string msg) { return format!"%s(%s): %s"(filename, line, msg); }
}

struct Struct {
 int field; // testlocation.d(12): HI!
}

enum Location location = Location.of!(Struct.field);
pragma(msg, location.message("HI!"));

$ dmd location.d
testlocation.d(12): HI!

CTFE UT

Unit Tests

■Weka is a BIG software project

■Some modules have quite heavy subsystem dependencies

■Compiling and linking Unit Test executables for large subsystems can take a long while!

■This is painful when developing and running UTs

CTFE UT

Unit Tests

■Weka is a BIG software project

■Some modules have quite heavy subsystem dependencies

■Compiling and linking Unit Test executables for large subsystems can take a long while!

■This is painful when developing and running UTs

 auto ut(alias F)() {
 bool check() {
 F();
 return true;
 }
 assert(check());
 static assert(check());
 }

CTFE UT

Unit Tests

■Weka is a BIG software project

■Some modules have quite heavy subsystem dependencies

■Compiling and linking Unit Test executables for large subsystems can take a long while!

■This is painful when developing and running UTs

 auto ut(alias F)() {
 bool check() {
 F();
 return true;
 }
 assert(check()); // Execute the `F` function in runtime
 static assert(check());
 }

CTFE UT

Unit Tests

■Weka is a BIG software project

■Some modules have quite heavy subsystem dependencies

■Compiling and linking Unit Test executables for large subsystems can take a long while!

■This is painful when developing and running UTs

 auto ut(alias F)() {
 bool check() {
 F();
 return true;
 }
 assert(check()); // Execute the `F` function in runtime
 static assert(check()); // Execute the `F` function in CTFE
 }

CTFE UT

Unit Tests - Example

int fib(int idx) {
 auto cur = 0;
 auto next = 1;
 foreach(i; 0..idx) {
 auto add = cur + next;
 cur = next;
 next = add;
 }
 return cur;
}

CTFE UT

Unit Tests - Example

unittest {

 assert(fib(0) == 0);
 assert(fib(2) == 1);
 assert(fib(5) == 5);
 assert(fib(-1) == 0);

}

CTFE UT

Unit Tests at compile time - Example

unittest {
 ut!({ // this UT will now run in CTFE & runtime
 assert(fib(0) == 0);
 assert(fib(2) == 1);
 assert(fib(5) == 5);
 assert(fib(-1) == 0);
 });
}

CTFE UT

Unit Tests at compile time - Example

unittest {
 ut!({ // this UT will now run in CTFE & runtime
 assert(fib(0) == 0);
 assert(fib(2) == 1);
 assert(fib(5) == 5);
 assert(fib(-1) == 0);
 });
}

 BONUS: Semantics of CTFE may differ from runtime, this can detect issues.

CTFE UT

Unit Tests at compile time - Example

unittest {
 ut!({ // this UT will now run in CTFE & runtime
 assert(fib(0) == 0);
 assert(fib(2) == 1);
 assert(fib(5) == 5);
 assert(fib(-1) == 0);
 });
}

 BONUS: Semantics of CTFE may differ from runtime, this can detect issues.

 if(__ctfe) ..bug..

CTFE UT

Unit Tests at compile time - Debugging

■gdb style debugging is not possible in CTFE

■pragma(msg, …) is only usable for template parameters and values declared as enum

■However, print-based debugging is possible with core.builtins.__ctfeWrite:

/// Writes `s` to `stderr` during CTFE (does nothing at runtime).
void __ctfeWrite(scope const(char)[] s) @nogc @safe pure nothrow {}

CTFE UT

Unit Tests at compile time - Debugging

■gdb style debugging is not possible in CTFE

■pragma(msg, …) is only usable for template parameters and values declared as enum

■However, print-based debugging is possible with core.builtins.__ctfeWrite:

/// Writes `s` to `stderr` during CTFE (does nothing at runtime).
void __ctfeWrite(scope const(char)[] s) @nogc @safe pure nothrow {}
 ^^^ may require GC string formatting

CTFE UT

Unit Tests at compile time - Debugging

■Wrapper to allow @nogc nothrow use:

@safe @nogc pure nothrow
auto ctfeWrite(string fmt, Args...)(auto ref Args args) {
 if(!__ctfe) return;

 // what happens in CTFE stays in CTFE...
 string s = as!"@safe @nogc pure nothrow"(() => format!fmt(args));
 __ctfeWrite(s);
}

Cheating the compiler

as

as!"@safe @nogc pure nothrow"({ … code … });

Cheating the compiler

as

as!"@safe @nogc pure nothrow"({ … code … });

■Needed when incrementally introducing @nogc to a large project

■Needed for legitimate edge cases (such as ctfeWrite, assert failure case, …)

Typed Identifiers

alias DiskId = TypedIdentifier!("DiskId", ushort, ushort.max, ushort.max);
alias InodeId = TypedIdentifier!("InodeId", ulong, 0, 0, FMT("0x{_value!%016x}"));
alias FSId = TypedIdentifier!("FSId", uint, uint.max, uint.max);
…

Typed Identifiers

alias DiskId = TypedIdentifier!("DiskId", ushort, ushort.max, ushort.max);
alias InodeId = TypedIdentifier!("InodeId", ulong, 0, 0, FMT("0x{_value!%016x}"));
alias FSId = TypedIdentifier!("FSId", uint, uint.max, uint.max);
…

■Confused two identifiers? Compiler error

■Great as documentation

■Nicer string formatting

■Can efficiently search all traces about DiskId<5> or InodeId<0x…>

Manual Overrides

auto timeout = manualOverride.getValue!(“cluster.raft_timeout”, 1500.msecs);

 Easy to use

This use of getValue is all that’s needed to declare this override

 Listable:

$ weka debug override list-keys

 statically typed:

$ weka debug override add --key cluster.raft_timeou --value ‘“abc”’
error: Override Key cluster.raft_timeou not found

$ weka debug override add --key cluster.raft_timeout --value ‘“abc”’
error: value of type Duration expected for this override: Got "abc"

 Runtime-efficient: compiles to reading a single __gshared variable

58 Weka® Proprietary and Confidential. © 2021

Thank You!
@wekaio /wekaio @wekaio

