
Arinas Platform
A visible architecture made easy with

DConf ‘25
London

August 21, 2025

Ľudovít Lučenič
ludovit.lucenic@digital-orchestra.sk

[Lyoodoveet Loochenyich] Digital Orchestra, s.r.o.
Simple things fast. Complex things simple.

 2

Main message
● The D language is efficient from a computational and

systems perspective

● Arinas Platform builds on this foundation
to deliver efficiency in the software development process

● Moreover, if you choose to compile its
LeS language to native D code, it can yield
a theoretical synergy of both strengths in the end

 3

Our domain

 4

Process efficiency
● How do we measure efficiency?● By costs

– time, resources, money, opportunities, ...

● What costs the most? ● Uncertainty
● What is the cause of uncertainty?● Entropy
● How does entropy show up?● As complexity

 5

Process efficiency – cont’d
● How do we approach software complexity?

– With models, decomposition & architecture

● What is the process efficiency aspect of
software architecture?
– The ability to answer architectural questions

quickly and consistently

● What enables that?

 6

Visible software architecture

 7

Software architecture
● concepts and features
● components, relationships
● design and evolution principles
● decisions that shape system structure and set

constraints or guide its all other designs

 8

Software architecture – a city map
● Imagine a system as a city:

– roads = data flows
– districts = domains
– buildings = components

● Seeing its architecture is like having its city map
● If the map is clear, decisions are faster
● The Arinas Platform makes that map clear

 9

Arinas Platform
● A development and runtime environment

based on tree structures
● It represents and interprets the program as a

tree – along with its inputs, outputs, data, code,
and architecture

● Control flow via tree traversal

Component

 10

Arinas Platform
● LeS language – a programming language

designed for tree manipulation
● Main use cases: web and portal applications
● Virtually any event-driven software can be

implemented using this concept

 11

A tree ?

Structure
System

Information

Structure
System

Information

 12

Arinas – Concepts and Paradigm
● Pattern (a module instance)

– a tree with a module type, attributes (name,
description, …), and subordinate patterns
governed by the module’s specification

● Package (a module set)
– defined by struct type (package), location, name

 13

Arinas – Concepts and Paradigm
● Pattern example

 14

Arinas – Concepts and Paradigm
● Dimensions

– spatial, object hierarchy, pattern subordination

● Module (a component)
– struct type (module), location in the module set (i.e.

module type), name, parent module type, private
data and pattern definitions, operations, attributes
and the subconfiguration definition, versioning
and upgrade information, submodule definitions

 15

Arinas – Concepts and Paradigm
● Module example

 16

Arinas – Concepts and Paradigm
● Module operation

Module definitions
and patterns are
interpreted as trees.
Operations are
executed. Everything is
written and represented
uniformly in LeS code.

 17

Arinas Platform - IDE

 18

Arinas Platform – Live Demo
● Architectural levels

– top level
– layer
– component
– element / function
– configuration

● Live examples
– locating a component
– implementing

requirements at
various levels

– instantiation and use
in different contexts

 19

 20

 21

 22

 23

 24

 25

 26

 27

Arinas Platform – Live Demo
● Live examples

– locating a component
– implementing

requirements at
various levels

– instantiation and use
in different contexts

● Architectural levels
– top level
– layer
– component
– element / function
– configuration

 28

Arinas Platform – LeS language
● An interpreted and extensible programming

language for tree manipulation
● A module’s operation in Arinas can be either:

– stateless: f(cur, cmd) = (ret)
– stateful: f(cur, cmd, env, req, ses) = (ret, req, ses)

● Concise syntax for expressing structure and
behaviour

 29

Arinas Platform – LeS language
● LeS language comprises

– control structures: if-else, for, foreach, while, switch, in (loop)

– tree context binding: src, tmp, dst trees, command blocks

– value handling: assignments, expressions, builtins
– exception handling: try, throw, catch, finally

– jump statements: return, break, skip, continue

– object hierarchy tests and traversals: eq, isof, refines,
this, super, root, parentof

 30

Arinas Platform - Implementation
● Crucial components

– DMD + dub
– Zsh interpreter
– vibe.d HTTP server
– vibe-core + all vibe.d

dependencies
– database connectors (optional)

● PostgreSQL (dpq2), SQLite

● 18.5k effective lines of
D code in 62 files

● 32,5k LOC in total

 31

Why D was chosen
● Native compilation – runs fast
● Multi-paradigm approach (assembler to metaprogramming)

● Open source and free software – compiler, libs
● Ample learning resources
● Advanced usability features – UFC, CTFE, RAII
● Crucial ecosystem components – such as vibe.d

 32

Appreciated features of D
● Generic programming
● Metaprogramming
● Compile-time introspection
● Declarative programming

– e.g. when writing the lexer

 33

Appreciated features of D
● Linker instructions (e.g. injecting mangled names for a function)

● Sleek, well-structured documentation
● Fast compilation – rapid development cycle
● Built-in boilerplate elimination
● Expressive, C/C++-syntax style

 34

D language – implementation support
● D has been effective for

– HTTP server – vibe.d
– runtime configuration –

layering of custom, default,
and fallback option values

– LaexTree data structure –
templated leaf data types and
LaexTreeVirtual node type

ARINAS Platform

Engine

Browser /
Client

Vibe.d
HTTP / Websocket

Server

Router

Request
Handler

Router

CFG

Program

Request
Handler

C
F

G
 R

ea
d

er

Router

LeS Language

LeS
Lexer

LeS
Parser

Executor

Env

BIC
Builtins – tree

transform
functions

L
o

ad
er

Interpreter

Operation

 35

D language – implementation support
● D has been effective for

– segmented logging: log areas defined
with UDAs and compile-time introspection

– LeS language lexer, parser and interpreter:
by reusing the D lexer and declaring LeS lexemes and rules

– additional infrastructure: LeS language builtins –
templated mixin definitions, timers – event-loop based,
database connectors – ddbc, dpq2

 36

D language – lessons learned
● Strengths:

– Quick compilation – fast development cycle
(performance)

– Versatile multiparadigm and pragmatic approach
(flexibility and freedom)

– Well-structured documentation

 37

D language – lessons learned
● Improvement suggestions:

– vibe.d – gradually fragmenting
– garbage collector efficiency and usability
– non-intuitive idioms, e.g. scope parameters,

@safe escapes with
 @trusted { doUnsafe(); }()

– lack of official documentation on
advanced features and topics

 38

The D community – observations
● Talented people make all the difference – early

potential turned into results
– a spirit of unbiased innovation – real technical

solutions
– a pragmatic approach – rooted in practice

● To use D is to have a lot of fun

 39

Value created with D
Arinas Platform benefits

● clear visibility of the layered architecture
● clean architectural interfaces - enabling

replacement or reimplementation
● top-down design and coding experience
● manageable module upgrading
● controlled refactoring and impact management

 40

Value created with D - cont’d
Arinas Platform benefits

● rapid data processing of tree data structures
● top-down design verified by direct execution

– from experience: ‘when it works, it’s correct’

● context synchronization
and versioning at
node/attribute level

 41

Arinas Platform – Vision and Future
● Architectural orchestrator –

polyglot approach
● Cloud deployments –

supporting multitenancy
● AI-assisted development –

leveraging pattern matching for suggestions
and derivations

 42

Arinas Platform – Vision and Future
● 3D visualization – VR, AR,

holographic projections
● D language could become

a viable alternative in VR
development

● Promote D language as a robust foundation for
higher-level concepts and architectures

 43

Key Takeaways
● When your goal is to run any complex system with

maximum efficiency, the D language is the right tool —
delivering outstanding computational and system
performance.

● When you also want to build such systems efficiently —
reducing development overhead, streamlining
workflows, and accelerating delivery — that’s where
Arinas Platform comes in.

 44

Thank you very much...

... for the language

 45

Arinas Platform
A visible architecture made easy with

● Questions?

● Answers?

 46

arinas.org

lescode.arinas.net

bitbucket.digital-orchestra.sk/projects/ARINAS/repos/public

	Snímka 1
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21
	Snímka 22
	Snímka 23
	Snímka 24
	Snímka 25
	Snímka 26
	Snímka 27
	Snímka 28
	Snímka 29
	Snímka 30
	Snímka 31
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35
	Snímka 36
	Snímka 37
	Snímka 38
	Snímka 39
	Snímka 40
	Snímka 41
	Snímka 42
	Snímka 43
	Snímka 44
	Snímka 45
	Snímka 46

