
Scaling D for Real-World
Projects: Doing it fastly

 ⚡︎ Refactoring old code
 ⚡︎ Underrated optimizations
 ⚡︎ Reducing output binary size
 ⚡︎ API design optimization

What is this talk about

My Background

 ⚡︎ Game Developer
 ⚡︎ Author of Redub - Hipreme Engine
 ⚡︎ Maintainer of Objective-C Bindings
 ⚡︎ Co-authors minimal D custom runtime
 ⚡︎ Specialist in Rendering & Porting

 ⚡︎ -profile=gc
 ⚡︎ Overall stats with GC.stats
 ⚡︎ Running code in weaker devices

Identifying Improvements

 ⚡︎ DConf 23': If I Cannot Dissuade You from Using
Atomics, at least Do It Safely
 - Roy Margalit
 ⚡︎ DConf 23': Stack Memory is Awesome!
 - Dennis Korpel
 ⚡︎ DConf 24': Good Fun: Creating a Data-Oriented
Parser/AST/Visitor Generator.
 - Robert Schadek

Looking into the past

https://dconf.org/2023/#roym
https://dconf.org/2023/#roym
https://dconf.org/2023/#dennisk
https://dconf.org/2024/#roberts
https://dconf.org/2024/#roberts

Profiling Binary Size

Example of optimized
output for wasm

binary

Twiggy
https://github.com/AlexEne/twiggy

Rust tool used for WASM
binary size profiling

Twiggy
https://github.com/AlexEne/twiggy

Example of optimized
output for wasm

binary
Rust tool used for WASM

binary size profiling

Profiling Binary Size

Reducing Binary Size
Check your parser:

 ⚡︎ Optimizer can’t do much, so the
gain is much bigger
 ⚡︎ Style is also easy to get wrong
 ⚡︎ Function calls piles up quickly
 ⚡︎ They are usually top offenders
in the binary dump
 ⚡︎ On first implementation, hard
 to optimize for binary size

 7397 ┊ 1.04% ┊ _D3hip4font6bmfont13HipBitmapFont9loadAtlasMFAyaQdZb

Reducing Binary Size

 ⚡︎ With -Oz, size reduced by 13Kb with a single change
 ⚡︎ Also became easier to maintain

Reducing Binary Size

Looping reflection members

Generated AST

Reducing Binary Size

Solution: Use Known Information***

Generated AST

Reducing Binary Size
USE KNOWN INFORMATION: TYPE ID

Note: Unfortunately .toString is required because typeid sharing on the
dynamic library bridge has a bug and is not found

Old Style

Reducing Binary Size

Wrapper of resource objects
implementing an interface

Forwarding: Instead of
tedious and error-prone
rewriting
Better Performance: Less
indirections in the code
Leaner TypeInfo: The less
code inside a class, the
better

Reducing Allocations
Example file of -profile=gc output

Reducing Allocations
TYPE YOUR ENUMS

32 Bytes 24 Bytes

 ⚡︎ -profile=gc makes it easier to find unoptimized bits in huge code bases
 ⚡︎ Impossible to auto-optimize: ABI compatibility exists , thus requiring developer
awareness.

Reducing Allocations
SORT YOUR CLASSES MEMBERS

52 bytes

43 bytes

OOP programmers
commonly forgets the
rules still applies to
classes.
Make them final. D final
classes have special
optimizations. Use
them.
24 bytes are reserved.
They are always
included in classes.

Reducing Allocations
FIND LEAKS

 ⚡︎ Your function may have a bug: and it will show in -profile=gc with ridiculously
large numbers.
 ⚡︎ You could be allocating: without even knowing.
 ⚡︎ You know new techniques: older code might allocate where there’s no need

Reducing Allocations
IMPROVE YOUR PERFORMANCE

5 tests in 50MB dictionary jsons
 ⚡︎ MB Per Second: 29.654
 ⚡︎ Free: 238MB
 ⚡︎ Allocated: 6569MB
 ⚡︎ Used: 3863MB

30K tests in 110KB string dictionary jsons
 ⚡︎ MB Per Second: 236.565
 ⚡︎ Free: 8MB
 ⚡︎ Allocated: 57845MB
 ⚡︎ Used: 14MB

UNOPTIMIZED VERSION
 ⚡︎ Untyped enum
 ⚡︎ Redundant information
 ⚡︎ 56 bytes structure

Reducing Allocations
IMPROVE YOUR PERFORMANCE

5 tests in 50MB dictionary jsons
 ⚡︎ MB Per Second: 40.23
 ⚡︎ Free: 360MB
 ⚡︎ Allocated: 5284MB
 ⚡︎ Used: 3076MB

30K tests in 110KB string dictionary jsons
 ⚡︎ MB Per Second: 753.97
 ⚡︎ Free: 2MB
 ⚡︎ Allocated: 10577MB
 ⚡︎ Used: 9MB

OPTIMIZED VERSION
 ⚡︎ Multi-purpose enum
 ⚡︎ Reuse and encode fields
 ⚡︎ 300% faster at string parsing dictionary
 ⚡︎ 37% faster at dictionary-only json
 ⚡︎ Memory consumption reduced by 82% on
string dictionary
 ⚡︎ Memory consumption reduced by 20% on
dictionary of dictionaries
 ⚡︎ 16 bytes structure [possibly reducible to 8]

Takes 642 ms

Takes 23 ms

Improving Performance
NEVER DO IT

 ⚡︎ Changes the init value of a data to 0
 ⚡︎ Does nothing on optimization
 ⚡︎ Might be double initializing the variable
 ⚡︎ Might mislead you into believing the code
has zero-cost initialization

DO IT
Actual void initialization

Timings took with LDC -O3 on run.dlang.org

Reducing Allocations
CONSTANT AWARENESS

 ⚡︎ GC.Stats: Used/Free memory
 ⚡︎ GC.ProfileStats: Timings for GC
 ⚡︎ `extern(C) __gshared string[]
rt_options = ["gcopt=profile:1"]`:
Prints stats in the program end
 ⚡︎ `--DRT-gcopt=profile:1` : Every D
program accepts this command line
argument

Reducing Allocations
REFCOUNT AND BUMP ALLOCATOR ISSUES

 ⚡︎ Bump allocator for WebAssembly runtime
 ⚡︎ RefCount for strings
 ⚡︎ Special handling to avoid fragmentation

Heap Start

Next

Heap End

Heap Start

Next

Heap End

Heap Start

Next

Heap End

Heap Start

Next

Heap EndFreed

Reducing Allocations
1.Low overhead with void

initialization
2.No fragmentation as CPU keep

tracks of it
3.Use-Case specialization.

Choose best size for the job
4.No allocator needed every

platform already has their
implementation

5.Faster. Profiling shown ⅓ of
CPU usage compared to
RefCount

6.Best for fire-and-forget API

SOLUTION: STACK MEMORY IS AWESOME

Into Scalability
Redub Plugins ⚡︎ Extend features using an

optimized tool
 ⚡︎ Optional and easy to use
 ⚡︎ Unifies everything into a single
tool
 ⚡︎ Ensure clear interaction with
core functionality
 ⚡︎ Share functionality across
dependencies

A plugin system that scales
without adding complexity

Into Scalability - Plugins

Basic structure
of a plugin

Into Scalability - Refactor
ACCEPT THAT YOU DON’T KNOW EVERYTHING

A bug in either linker/compiler didn’t allow `main` (in
DMD) to be inside a library.

UGLY SOLUTION: UNNAMED DEPENDENCY

 ⚡︎ Custom dub preprocessor As one
would need a special case issue
 ⚡︎ Additional tool needed: A tool which
created a new project description using
engine as main

 ⚡︎ Redundant As that doesn’t solve any
other issue
 ⚡︎ Hacks doesn’t scale: That tool solved
the problem at that time, but made me
refactor every single time

Into Scalability - Refactor
ACCEPT THAT YOU DON’T KNOW EVERYTHING

Another bug would also strip some exported functions when
inside library and not referenced by the main package

 ⚡︎ Reflection for making the hack bearable
 ⚡︎ Dynamic Library bridge hack as dmd would
collect memory sent to the dynamic library

Into Scalability - Refactor
EXCLUDE UNUSED CODE AS FAST AS POSSIBLE

 ⚡︎ Lua Support Added in 2021: That was
when most base progress of the engine
had been done

 ⚡︎ The API exporting was completely
based on it

As shown in the
following code, the
API turned into a
function pointer
holder, since that was
how it made it
exposable to Lua

Into Scalability - Refactor
CHECK MULTITHREADING EVERY TIME YOU LEARN

Locks for simple code I see DEAD LOCKS

Into Scalability - Refactor
CHECK MULTITHREADING EVERY TIME YOU LEARN

 ⚡︎ Lockless code: State read should not
need a lock, which makes it much faster
and easier to read
 ⚡︎ Separate length field: For
guaranteeing atomic reads, you might
do it Single Lock: Locking is done only

for syncing jobs queue

Into Scalability - Refactor
DON’T FOLLOW A SINGLE DESIGN STYLE

Before After
 ⚡︎ Delegates: No control on allocation
 ⚡︎ Locks Needed: Sharing threads data

 ⚡︎ Classes: Recycle memory, deallocate on
demand
 ⚡︎ State Machine: Remove the usage of
locks as state handles synchronization

Into Scalability - Refactor
PROBLEM: PROVIDE FAST BUILD TIMES AND FLEXIBLE API

Alternatives

❌ Extern Function: Unable to use since API the

implementation has link-time dependency

❌PImpl: C interface hiding. Requires function API and

needs reflection to make it scalable

⚠️Dependency Injection: Pass an object which holds

the implementation, but has a verbose API and

requires many refactors

⚠️ Service Locator: Create a global object which

provides functionality. Not very flexible

✔️Service Locator + Dependency Injection: Both

engine and users have the same API with explicit

initialization in the engine. Locator uses interfaces to

implementation

Into Scalability - Refactor
SERVICE LOCATOR EXAMPLE

Common code living in API Interface code example

Main executable DI startup DLL DI startup

Into Scalability - Refactor
COMPARISON WITH OLD SOLUTION

 ⚡︎ Required Reflection: So it
made defining API easier,
which also increased
compilation times and code
complexity
 ⚡︎ Functionality not
shareable: Could not import
resources since they
needed unexposed
functionality

Every function was static and required a special UDA

Into Scalability - Refactor
NEW SOLUTION USAGE

Another dependency injection

 ⚡︎ Use getDecoder API: set at
startup of main and dll

DLL DI Initialization
 ⚡︎ No partial functionality: So the
resource can be directly used by the
user
 ⚡︎ API defined once: No more manual
definition on what the developer can
use

Into Scalability - Reflection

 ⚡︎ Shared Independent API: As it needs

to run outside the engine . Uses the

same code inside the server

 ⚡︎ Reserve Functionality: The more it is

implemented on both, the better. This

guarantees stability and scalability

NETWORK RELATED CODE SHARING

Into Scalability - Reflection

 ⚡︎ Standardized Serialization and

Deserialization: Create a common way

to the data identification on both

client and server

 ⚡︎ Optimize on lower bandwidth cost:

Use D functionality to generate tightly

packed data to be shared on the

network

NETWORK RELATED CODE SHARING

Into Scalability - Reflection
 ⚡︎ Auto code generation: Create a class

which wraps the MarkNetData so it

becomes easier to use the data

 ⚡︎ Work in a way where the protocol is

completely abstracted: Using

reflection alongside code sharing and

abstraction can create a powerful,

easy to use and performant API

NETWORK RELATED CODE SHARING

CONCLUSION
1. Mix different techniques: This will actually reduce the

complexity of the code and reduce workarounds and

hacks

2. You can’t escape from refactor: As your experience as

a developer grows, you’ll start doing it

3. Refactor as soon as you don’t understand: Chances are

that you have already outgrown yourself

4. Create scope challenges: Be it on binary size, memory

consumption or CPU. You’ll always learn something

from it and make your library much better

QUESTIONS?

