Evolving Constants by
Rewriting Source Code

Dconf 2025 London — Guillaume Piolat

G, "% x :;j' ; w . | i | ;i T_,
; “ e } RS : ; N ? 5 . 2 w5l
. doesn’t have
ke) ; ¥ § b u):.I 58
low-latency pitch-shiftin
= A

$AKL 3 X

A

% \:"w(g r~ ;’}J 4 ¥ 3 b

3 ’ - L : LIS G0 J

Changing the pitch
of a sound signal
is damn hard.

Changing the pitch
of a sound signal
is damn hard.

Especially real-time, with

polyphonic input.

o PITCHSHIFT PRO AY zynaptiq

[CHANNEL SETUP.. | < Simply Awesome > y DRY/WET /

ALGORITHM /

Zynaptiqg Pitchshift Pro
(2024)

MIXED 1.00

PITCH SHIFT FORMANTS

ELASTIQUEPITCH Ve

Zplane Elastique Pro V3 Engine
(2015)

o PITCHSHIFT PRO AY zynaptiq

| CHANNEL SETUP. < Simply Awesome > » DRY/WET /

/“

ALGORITHM /

Zynaptiqg Pitchshift Pro
(2024)

MIXED 1.00

PITCH SHIFT FORMANTS

ELASTIQUEPITCH U2

Zplane Elastique Pro V3 Engine
(2015)

Inner Pitch v1(2023)

- 17ms latency

Inner Pitch v1(2023)

- 17ms latency

- Competitive and writtenin D ?

Inner Pitch v1(2023)

17ms latency

Competitive and writtenin D ﬁ

All the State of the Art algorithms
are spectral aka Phase Vocoders

do anyway’

Input
Signal

Windowing

Time-
domain
frames

spectral
transform

Spectral
frames
made of
bins

1

Hop Overlap Window
size size size

-
B

spectral

transform L

Spectral

frames

made of —l
bins e

Input

Signal
Windowing
[o 0 0
| I]
I 1] "
Hop Overlap Window
size size size

o, / M« i

frames ﬁi/wm| Mﬂﬂ cos

Output
Signal

?

Ti me- ve""'ﬂp

)

N

f
domain i y
frames

%

0

! H
A

Phase vocoder algorithm

Ll

Input ‘
—> Signal Output

\ T

Windowing Zi me- EN%“MW% =
omain A

frames w "w)
—i % WMF

Hop Overlap Wil}dow

e e e Phase vocoder algorithm

1 M L For each bin, choose one of:
Time- W :

domain
frames
ﬂ‘;‘, i I ﬂ 000
spectral L

transform

Spectral

frames

made of —
bins R

Phase propagation in the Phase Vocoder

Foreach bin in the
spectral frame

Phase propagation in the Phase Vocoder

HORIZONTAL CHOICE ~ A1
Favors continuity with
previous frame.

Phase propagation in the Phase Vocoder

N\
‘ HORIZONTAL CHOICE ~ X
. . . A\
Favors continuity with
previous frame. o
VERTICAL CHOICE Al

Do like strong neighbour bins do.

Phase propagation in the Phase Vocoder

N\
‘ HORIZONTAL CHOICE ~ 1
- 5 5 N
Favors continuity with
previous frame. \
\
VERTICAL CHOICE \

Do like strong neighbour bins do.

TRANSIENT CHOICE

A Favors this bin phase information. /\\//\/

lgnore neighbours or previous frame.

End results in 2023

- Complex algorithm

End results in 2023

- Complex algorithm

- ~100 magic constants this time

/// Wins little bit of clarity.

@tuning enum float BLEND_NEAREST_SAMPLING_V1 = 0.05;

End results in 2023

Complex algorithm

~100 magic constants this time

Most of the time is spent making these constants appear, and
finding good values for them.

/// Wins little bit of clarity.

@tuning enum float BLEND_NEAREST_SAMPLING_V1 = 0.05;

Such as this one.

Tuning process

| Haveanidea |gg—— Update

baseline
Interactive
tweaks,
A/B tests

Does it

sound
better?

No Yes

A sort of manual gradient descent

- Need to retune already tuned constants.

- Sometimes need to kill bad concepts and
step back in sound quality.

- Some constants are “covering up” bad
values of other constants

A sort of manual gradient descent

Need to retune already tuned constants.

Sometimes need to kill bad concepts and
step back in sound quality.

Some constants are “covering up” bad
values of other constants

Human audition degrades with age

Replace this step?

| Haveanidea |gg—— Update

baseline
Interactive
tweaks,
A/B tests

Does it

sound
better?

No Yes

ﬂttnv:q-.--- wSEEERENEEE RN
-¢¢¢<d-“<¢41=¢-<1<v¢-¢¢4¢¢--.

st~ SR

- ' ‘) ‘ \ ,“ l 2020 Twelfth International Conference on Quality of Multimedia Experience (QOMEX)
/ ' A A d ViSQOL v3: An Open Source Production Ready

THE PERCEPTUAL QUALITY EXPERTS e
— Objective Speech

Efforts initiated in 1994 by the ITU-R to identify andu™"™ ™"

and Audio Metric

Nikita Gureev ~ Feargus O’Gorman and Andrew Hines
Hangouts Meet School of Computer Science
Google LLC University College of Dublin

recommend a method for the objective measurement of per- Llizgiil’?m ke o

gureev@google.com feargusog@gmail.com, andrew.hines @ucd.ie

ceived audio quality culminated in 2001 with recommenda-

tion BS.1387 [1], most commonly known as the Perceptual i s

Evaluation of Audio Quality (PEAQ) method. This method o5 e mim
roogle has helped to improve this

1s based on generally accepted psychoacoustic principles and sz i

s. The new model is benchmarked
Iuatmn purposes. The trends and

has successfully been adopted by the perceptual audio codec i s man o
development and the broadcasting industries [2].

PEAQ (1998)

the waveform by sampling from a distribution of learned
parameters. One example is the WaveNet-based low bitrate
coder [10], which is generative in nature. There are other
DNN-based generative models, including SampleRNN [11]
and WaveGlow [12], with promising results that suggest that
this trend will continue. These generative models typically do
not lend themselves to being analyzed well by existing full
reference speech quality metrics. While the work described
in this paper does not propose a solution to the generative
problem, the limitations of the current model should be
acknowledged to encourage development of solutions.
ViSQOL was originally designed with a polynomial map-

ViSQOL v3 (2020)

Perceptual objective measures are a thing

Settled on visqol-rs

= 0 dstrub18 / visqol-rs

- writtenin Rust

<> Code () Issues 1 19 Pull requests (® Actions [Projects

©||¥|| W

- based upon Google
research and Al model

The speech quality evalutator ViSQOL written in Rust

&8 Apache-2.0 license
vy 16stars % Oforks ® 1watching § 2Branches © 0Tags - Actiy

@ Public repository

Settled on visqol-rs

= O dstrub18 / visqol-rs

<> Code () lIssues 1 £ Pull requests ® Actions [Projects

- writtenin Rust

©|| ¥ || =

- based upon Google
research and Al model

The speech quality evalutator ViSQOL written in Rust

88 Apache-2.0 license
Y% 16stars % Oforks ® 1watching § 2Branches 0Tags A~ Actiy

@ Public repository

My stuff is finally running through a neural network!

How would a machine know
what is “good sound”?

Audio objective measures

Original
sound -

Some kind
of transform

visqol-rs

Processed
sound

| never tire of
listening.

Audio objective measures

That, | evaluated.

Original
sound

Some kind
of transform

Processed
sound

visqol-rs

“Drocecced cound ic

749.65%

like the original,
according to AL’

Audio objective measures

Original

That, | evaluated.

sound

Some kind
of transform

Processed
sound

In the codec sense, quality is
meant as reproduction.

visqol-rs

“Drocecced cound ic

749.65%

like the original,
according to AL’

Pitch-shifting objective measure

Source A visgol-rs
Pitch +7 Pitch -7
semitones semltones
Source B visgol-rs
Pitch -4 Pitch +4
semitones semltones

=

M

Weighted
sum

Yes, but...

You're going to want to
modify all my magic
constants, right?

enum float NOISE_BINS ANGLE_EXTENT = ©.9922;

You're going to like...
modify all my magic
constants, right?

Well, yeah. That’s what
optimization does.

&UIIDLdIILD,I 1IStHiL. /

/Well, yeah. That's what i

optimization does.
\)

/Take a look at the B
codebase. Thereis no
way to put them all in

- one place. ,

Take aloot at the
codebase. Thereis no
way to put them all in

\one place. y

| see. We'll find a way
to just add some UDA:s.

\

/

T
]

All tuning
variables
go here

D

Y
N

All tuning

modify+build

Tool Ej

\ 4

variables

go here

D

fileA.d

4

ﬁIeB.dJ

Instead of gathering all parameters in

one single place:
- 1. Parse source file
- 2.Regenerate source code
- 3. Rebuild and evaluate

| _
| TNV /7 N[NV / /-0 Let’s present evolve,
] 8of NIl S N

a solution for this problem.

B WHAT'S THIS?

#evolve 4 optimizes your magic constants with gradient descent.

® HOw IT WORKS

#evolve 4 builds a D program repeatedly while changing float/double
non-array variables and constants, marked with the @tuning
user—-defined attribute (called variables below).

i S — o ey
import dplug.dsp.udas;

@tuning float MY_MAGIC_CONSTANTO = 0.10;
@tuning double MY_MAGIC_CONSTANT1 = 0.28;
@tuning enum float MY_MAGIC_CONSTANT2 = 0.30;
@tuning enum double MY_MAGIC_CONSTANT3 = 0.45;

Searching package innerpitch

- @tuning float PITCH_CORRECTION_AMOUNT = 1.0 *(0.9 + 0.83
- @tuning float PITCH_SMOOTH_SECS = 0.0015 > (0.5 + 0.1388
- @tuning float PITCH_INERTIA = 0.1 * (0.5 + 0.3888888);//
- @tuning float PITCH_SNAP_MIN = 0.65;//tuned once

- @tuning float PITCH_SNAP_MAX = 1.09666666664;//tuned onc
eVOIYe tOO| - @tuning @historical float COGBLUG_TONAL_V1 = 239.4 ;
can list - @tuning float COGBLUG_TONAL_V2 = 359.1; // that's.... a

. - @tuning float HORIZONTAL_PROPAGATION_DEBUFF_V1 = -24.2f;
tunlng - @tuning float HORIZONTAL_PROPAGATION_DEBUFF_V2 = -14.2333336

. = @tuning enum int PITCH_DOWNSAMPLING = 16;
variables :

and has .
semantic UDAs }
for ignoring
some

if needed.

- @tuning int MAX_INERTIA_BUFF = 360;
- @tuning enum float POST_BESSEL_CUTOFF_HZ = 23.75;
=> 27 vars found: 9 tunable, ignored, 3 errors

Bring your own fitness measure.

For evolution it needs a 4 fitness measure 4to evaluate each build.
#evolve # runs from within a DUB project directory, and uses the git

working copy as temporary state.

Bring your own fitness measure.

For evolution it needs a 4 f: S m ire 4to evaluate each build.
#evolve 4 runs from w1th1n a DUB prOJect directory, and uses the git
working copy as temporary state.

F-I-
Pitch +7 Pitch-7
semitones semitones

SourceB
Il Pitch-4 . Pitch +4 I

semltones semltones

In pitch-shifting case

Bring your own fitness measure.

For evolution it needs a 4 fitness measure 4to evaluate each build.
#evolve # runs from within a DUB project directory, and uses the git

working copy as temporary state.

Fitness program
must return a
fitness.xml file
with one number.

// Write final XML

File results File("fitness.xml", "w"

results
results
results
results

return

writeln(<?xml version="1.0" encoding="UTF-8"?>"
writeln(<results>”

writefln(" <metric name="dummy" value="7%.13f" />
writeln(</results>”

totalFitness

< version=" " encoding=" "?>
< >
<!—-— Both these variable will be evolved ——>

< name="MY_VAR" />
< name="MY_OTHER_VAR" />

<!-— How to build and 4evaluate 4 the program ——>
< >mytest —-param</ >
< >dub -b release</ >
< >dub</ >
<!-— Ignored package for parsing variables --—>
< name="gamut" />
< name="dplug:dsp" />
</ >

Tool here: https://github.com/AuburnSounds/Dplug/tree/master/tools/evolve

here Compute fitness here, with current local changes.
Do not change working copy.

evolve —a here

= Just displays

current fitness.

gradient Use ——pattern search here, then change the best
variable once all are evaluated.

Pattern searchin
each dimension.
Pick single best
improvement.

-=pdttern 0.8,1.9,1.25

whirlpool Use ——pattern search here, then change each
tested variable immediately after evaluation.

Pattern searchi
each dimension.
Change

immediately to
better value.

——pdLtern 0.8,1.9,1.29

4 search algorithms in evolve tool

diffevol Use "Differential Evolution" algorithm.

A famously simple
metaheuristic
optimization
algorithm.

Typical population > 15

(source = htps://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/)

What will be the most useful
algorithm in practice?

e A.gradient

e B.differential evolution

e C.whirlpool

What will be the most useful
algorithm in practice?

e A.gradient

e B.differential evolution

e C.whirlpool

Build times are pretty slow

!

“whirlpool” method Rebuild

just makes less
evaluations and

!

move on.
Fitness

Build times are pretty slow

- Fitness evaluation may be fast, but it doesn’t ¢
matter since rebuilding is rather slow. Rebuild

- Might as well have a slow fitness evalution *

YOU HAVE BEEN Fitness

) \-e%; ”',l‘.". -
AMDAHL’S LAWED

Build times are pretty slow

- Fitness evaluation may be fast, but it doesn’t ¢
matter since rebuilding is rather slow. Rebuild

- Might as well have a slow fitness evalution *

YOU HAVE BEEN Fitness
The evolve tool is applicable

where the fitness evaluation

is slow,
such as perceptual measures.

AMDAHL’S LAWED

Just 26 man-days after starting the
automatic optimization effort,

Just 26 man-days after starting the
automatic optimization effort,
sound quality had actually decreased.

Everything that went wrong

A. Remember slide 337

Pitch-shifting objective measure

SourceA V|sqol rs

PItCh W/
semltones

SourceB
Il Pitch -4 . Pitch +4 I

semltones

Pltch -7
semltones

semltones

visqol-rs

O

Weighted
sum

We proposed
to shift +N
then -N

to return close
to the original
sound.

A. Remember slide 337

Pitch-shifting objective measure

Source A

N~

— — E The pitch-shifter quickly learnt
R =Dltbnes to do nothing such as to maximize

Source B

|: similarity with original.
Pitch -4 Pitch +4

semitones semitones then _N

to return close
to the original
sound.

When we write programs
that "learn”, it turns out
that we do and they don't.

— Alan Perlis

B. Remember slide 197

We said to have many
parameters to evolve,
and that whirlpool was

used.
End results in 2023

- Complex algorithm

-1 ~100 miagic constants this time

)it of clarity.
Loat BLEND_NEAREST_SAMPLING V1 = 0.05;

B. Remember slide 197

We said to have many
parameters to evolve,
and that whirlpool was

used.
End results in 2023

- Complex algorithm

-1 ~100 miagic constants this time

HIGH DIMENSIONS
ARE NOT ADVISED

Easy to make minor
“progress”
indefinitely.

C. Againslide 33

Pitch-shifting objective measure

e
Pitch +7 Pitch -7
semitones semitones

Pitch -4 Pitch +4
semitones semitones

Weightec
sum

Fitness evaluation
used 11 meaningful
and different
sources to compute
the ViSQOL v3
measure.

Each source is used
for 4 different
shifting.

C. Againslide 33

Fitness evaluation
used 11 meaningful

Pitch-shifting objective measure and different
sources to compute

. ‘ the ViSQOL v3
Source A visqol-rs ‘ diEh| U\ measure.

\ Pitch+7 Pitch-7

semitones semitones

Weightec

enough sources!

Source B ﬂ visqol-rs > We", that’s not

Pitch -4 Pitch +4
semitones semitones

Need more data
else overfitting.

C. Againslide 33

Fitness evaluation
need 11 megningful

nt
“A typical rule of thumb is that there should be at least compute
5 training examples for each dimension in the representation.” | v3

e

Source: https://en.wikipedia.org/wiki/Curse_of_dimensionality

Well, that’s not
enough sources!

>ouree? m’ ﬁ
Pitch -4 Pitch +4

semltones semltones

Need more data
else overfitting.

Epilogue

Had to assess each change manually

machine

- Tryingidea < Update

from ML baseline
A/B tests

Does it
sound
better?

No Yes

- Shipped in Inner Pitch v2 (Feb 2025)

Tool is on GitHub

https://github.com/AuburnSounds/Dplug/tools

Questions?

https://github.com/AuburnSounds/Dplug/tools

Bonus slide

- Hippopotamus optimization

- Squid Game Optimizer

- Political Optimizer

- Emperor Penguins Colony

- Dujiangyan Irrigation System

- Cuckoo Optimization Algorithm
- Cuckoo Search

All are real meta-heuristic algorithms.

MHO: A Modified Hippop Optimization Algorithm for Global
Optimization and Engineering Design Problems
Han & yan Wa i " &, Qu: g Liu & © and Yourui Huang

=]

Hippotamus algorithm,
one of the most downloaded
papers of 2024.

Bonus slide

- Hippopotamus optimization

- Squid Game Optimizer

- Political Optimizer

- Emperor Penguins Colony

- Dujiangyan Irrigation System

- Cuckoo Optimization Algorithm
- Cuckoo Search

All are real meta-heuristic algorithms.

